JR
Julien Riou
Author with expertise in Modeling the Dynamics of COVID-19 Pandemic
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
1,695
h-index:
27
/
i10-index:
61
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk

Romulus Breban et al.Jul 5, 2013
BackgroundThe new Middle East respiratory syndrome coronavirus (MERS-CoV) infection shares many clinical, epidemiological, and virological similarities with that of severe acute respiratory syndrome (SARS)-CoV. We aimed to estimate virus transmissibility and the epidemic potential of MERS-CoV, and to compare the results with similar findings obtained for prepandemic SARS.MethodsWe retrieved data for MERS-CoV clusters from the WHO summary and subsequent reports, and published descriptions of cases, and took into account 55 of the 64 laboratory-confirmed cases of MERS-CoV reported as of June 21, 2013, excluding cases notified in the previous 2 weeks. To assess the interhuman transmissibility of MERS-CoV, we used Bayesian analysis to estimate the basic reproduction number (R0) and compared it to that of prepandemic SARS. We considered two scenarios, depending on the interpretation of the MERS-CoV cluster-size data.ResultsWith our most pessimistic scenario (scenario 2), we estimated MERS-CoV R0 to be 0·69 (95% CI 0·50–0·92); by contrast, the R0 for prepandemic SARS-CoV was 0·80 (0·54–1·13). Our optimistic scenario (scenario 1) yielded a MERS-CoV R0 of 0·60 (0·42–0·80). Because of recent implementation of effective contact tracing and isolation procedures, further MERS-CoV transmission data might no longer describe an entire cluster, but only secondary infections directly caused by the index patient. Hence, we calculated that, under scenario 2, eight or more secondary infections caused by the next index patient would translate into a 5% or higher chance that the revised MERS-CoV R0 would exceed 1—ie, that MERS-CoV might have pandemic potential.InterpretationOur analysis suggests that MERS-CoV does not yet have pandemic potential. We recommend enhanced surveillance, active contact tracing, and vigorous searches for the MERS-CoV animal hosts and transmission routes to human beings.FundingAgence Nationale de la Recherche (Labex Integrative Biology of Emerging Infectious Diseases), and the European Community's Seventh Framework Programme project PREDEMICS.
3

Bayesian workflow for disease transmission modeling in Stan

Léo Grinsztajn et al.Sep 8, 2021
This tutorial shows how to build, fit, and criticize disease transmission models in Stan, and should be useful to researchers interested in modeling the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pandemic and other infectious diseases in a Bayesian framework. Bayesian modeling provides a principled way to quantify uncertainty and incorporate both data and prior knowledge into the model estimates. Stan is an expressive probabilistic programming language that abstracts the inference and allows users to focus on the modeling. As a result, Stan code is readable and easily extensible, which makes the modeler's work more transparent. Furthermore, Stan's main inference engine, Hamiltonian Monte Carlo sampling, is amiable to diagnostics, which means the user can verify whether the obtained inference is reliable. In this tutorial, we demonstrate how to formulate, fit, and diagnose a compartmental transmission model in Stan, first with a simple susceptible‐infected‐recovered model, then with a more elaborate transmission model used during the SARS‐CoV‐2 pandemic. We also cover advanced topics which can further help practitioners fit sophisticated models; notably, how to use simulations to probe the model and priors, and computational techniques to scale‐up models based on ordinary differential equations.
0

Bayesian workflow for disease transmission modeling in Stan

Léo Grinsztajn et al.Jan 1, 2020
This tutorial shows how to build, fit, and criticize disease transmission models in Stan, and should be useful to researchers interested in modeling the SARS-CoV-2 pandemic and other infectious diseases in a Bayesian framework. Bayesian modeling provides a principled way to quantify uncertainty and incorporate both data and prior knowledge into the model estimates. Stan is an expressive probabilistic programming language that abstracts the inference and allows users to focus on the modeling. As a result, Stan code is readable and easily extensible, which makes the modeler's work more transparent. Furthermore, Stan's main inference engine, Hamiltonian Monte Carlo sampling, is amiable to diagnostics, which means the user can verify whether the obtained inference is reliable. In this tutorial, we demonstrate how to formulate, fit, and diagnose a compartmental transmission model in Stan, first with a simple Susceptible-Infected-Recovered (SIR) model, then with a more elaborate transmission model used during the SARS-CoV-2 pandemic. We also cover advanced topics which can further help practitioners fit sophisticated models; notably, how to use simulations to probe the model and priors, and computational techniques to scale-up models based on ordinary differential equations.
1

A comparative analysis of Chikungunya and Zika transmission

Julien Riou et al.Oct 4, 2016
The recent global dissemination of Chikungunya and Zika has fostered public health concern worldwide. To better understand the drivers of transmission of these two arboviral diseases, we propose a joint analysis of Chikungunya and Zika epidemics in the same territories, taking into account the common epidemiological features of the epidemics: transmitted by the same vector, in the same environments, and observed by the same surveillance systems. We analyse eighteen outbreaks in French Polynesia and the French West Indies using a hierarchical time-dependent SIR model accounting for the effect of virus, location and weather on transmission, and based on a disease specific serial interval. We show that Chikungunya and Zika have similar transmission potential in the same territories (transmissibility ratio between Zika and Chikungunya of 1.04 [95% credible interval: 0.97; 1.13]), but that detection and reporting rates were different (around 19% for Zika and 40% for Chikungunya). Temperature variations between 22°C and 29°C did not alter transmission, but increased precipitation showed a dual effect, first reducing transmission after a two-week delay, then increasing it around five weeks later. The present study provides valuable information for risk assessment and introduces a modelling framework for the comparative analysis of arboviral infections that can be extended to other viruses and territories.
14

Estimating cumulative incidence of SARS-CoV-2 with imperfect serological tests: exploiting cutoff-free approaches

Judith Bouman et al.Apr 30, 2020
Abstract Large-scale serological testing in the population is essential to determine the true extent of the current SARS-CoV-2 pandemic. Serological tests measure antibody responses against pathogens and use predefined cutoff levels that dichotomize the quantitative test measures into sero-positives and negatives and use this as a proxy for past infection. With the imperfect assays that are currently available to test for past SARS-CoV-2 infection, the fraction of seropositive individuals in serosurveys is a biased estimator of the cumulative incidence and is usually corrected to account for the sensitivity and specificity. Here we use an inference method — referred to as mixture-model approach — for the estimation of the cumulative incidence that does not require to define cutoffs by integrating the quantitative test measures directly into the statistical inference procedure. We confirm that the mixture model outperforms the methods based on cutoffs, leading to less bias and error in estimates of the cumulative incidence. We illustrate how the mixture model can be used to optimize the design of serosurveys with imperfect serological tests. We also provide guidance on the number of control and case sera that are required to quantify the test’s ambiguity sufficiently to enable the reliable estimation of the cumulative incidence. Lastly, we show how this approach can be used to estimate the cumulative incidence of classes of infections with an unknown distribution of quantitative test measures. This is a very promising application of the mixture-model approach that could identify the elusive fraction of asymptomatic SARS-CoV-2 infections. An R-package implementing the inference methods used in this paper is provided. Our study advocates using serological tests without cutoffs, especially if they are used to determine parameters characterizing populations rather than individuals. This approach circumvents some of the shortcomings of cutoff-based methods at exactly the low cumulative incidence levels and test accuracies that we are currently facing in SARS-CoV-2 serosurveys. Author Summary As other pathogens, SARS-CoV-2 elicits antibody responses in infected people that can be detected in their blood serum as early as a week after the infection until long after recovery. The presence of SARS-CoV-2 specific antibodies can therefore be used as a marker of past infection, and the prevalence of seropositive people, i.e. people with specific antibodies, is a key measure to determine the extent of the SARS-CoV-2 pandemic. The serological tests, however, are usually not perfect, yielding false positive and false negative results. Here we exploit an approach that refrains from classifying people as seropositive or negative, but rather compares the antibody level of an individual to that of confirmed cases and controls. This approach leads to more reliable estimates of cumulative incidence, especially for the low prevalence and low test accuracies that we face during the current SARS-CoV-2 pandemic. We also show how this approach can be extended to infer the presence of specific types of cases that have not been used for validating the test, such as people that underwent a mild or asymptomatic infection.
0

Improving early epidemiological assessment of emerging Aedes-transmitted epidemics using historical data

Julien Riou et al.Apr 16, 2018
Model-based epidemiological assessment is useful to support decision-making at the beginning of an emerging Aedes-transmitted outbreak. However, early forecasts are generally unreliable as little information is available in the first few incidence data points. Here, we show how past Aedes-transmitted epidemics help improve these predictions. The approach was applied to the 2015-2017 Zika virus epidemics in three islands of the French West Indies, with historical data including other Aedes-transmitted diseases (Chikungunya and Zika) in the same and other locations. Hierarchical models were used to build informative a priori distributions on the reproduction ratio and the reporting rates. The accuracy and sharpness of forecasts improved substantially when these a priori distributions were used in models for prediction. For example, early forecasts of final epidemic size obtained without historical information were 3.3 times too high on average (range: 0.2 to 5.8) with respect to the eventual size, but were far closer (1.1 times the real value on average, range: 0.4 to 1.5) using information on past CHIKV epidemics in the same places. Likewise, the 97.5% upper bound for maximal incidence was 15.3 times (range: 2.0 to 63.1) the actual peak incidence, and became much sharper at 2.4 times (range: 1.3 to 3.9) the actual peak incidence with informative a priori distributions. Improvements were more limited for the date of peak incidence and the total duration of the epidemic. The framework can adapt to all forecasting models at the early stages of emerging Aedes-transmitted outbreaks.
0

Pattern of early human-to-human transmission of Wuhan 2019-nCoV

Julien Riou et al.Jan 24, 2020
On December 31, 2019, the World Health Organization was notified about a cluster of pneumonia of unknown aetiology in the city of Wuhan, China. Chinese authorities later identified a new coronavirus (2019-nCoV) as the causative agent of the outbreak. As of January 23, 2020, 655 cases have been confirmed in China and several other countries. Understanding the transmission characteristics and the potential for sustained human-to-human transmission of 2019-nCoV is critically important for coordinating current screening and containment strategies, and determining whether the outbreak constitutes a public health emergency of international concern (PHEIC). We performed stochastic simulations of early outbreak trajectories that are consistent with the epidemiological findings to date. We found the basic reproduction number, R_0, to be around 2.2 (90% high density interval 1.4--3.8), indicating the potential for sustained human-to-human transmission. Transmission characteristics appear to be of a similar magnitude to severe acute respiratory syndrome-related coronavirus (SARS-CoV) and the 1918 pandemic influenza. These findings underline the importance of heightened screening, surveillance and control efforts, particularly at airports and other travel hubs, in order to prevent further international spread of 2019-nCoV.
0

Surveillance of SARS-CoV-2 prevalence from repeated pooled testing: application to Swiss routine data

Julien Riou et al.Jan 1, 2024
Surveillance of SARS-CoV-2 through reported positive RT-PCR tests is biased due to non-random testing. Prevalence estimation in population-based samples corrects for this bias. Within this context, the pooled testing design offers many advantages, but several challenges remain with regards to the analysis of such data. We developed a Bayesian model aimed at estimating the prevalence of infection from repeated pooled testing data while (i) correcting for test sensitivity; (ii) propagating the uncertainty in test sensitivity; and (iii) including correlation over time and space. We validated the model in simulated scenarios, showing that the model is reliable when the sample size is at least 500, the pool size below 20, and the true prevalence below 5%. We applied the model to 1.49 million pooled tests collected in Switzerland in 2021-2022 in schools, care centres, and workplaces. We identified similar dynamics in all three settings, with prevalence peaking at 4-5% during winter 2022. We also identified differences across regions. Prevalence estimates in schools were correlated with reported cases, hospitalizations, and deaths (coefficient 0.84 to 0.90). We conclude that in many practical situations, the pooled test design is a reliable and affordable alternative for the surveillance of SARS-CoV-2 and other viruses.