LG
L. Guzzo
Author with expertise in Astronomical Instrumentation and Spectroscopy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(97% Open Access)
Cited by:
8,449
h-index:
87
/
i10-index:
281
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The First Release COSMOS Optical and Near‐IR Data and Catalog

P. Capak et al.Aug 31, 2007
+55
M
H
P
We present imaging data and photometry for the COSMOS survey in 15 photometric bands between 0.3um and 2.4um. These include data taken on the Subaru 8.3m telescope, the KPNO and CTIO 4m telescopes, and the CFHT 3.6m telescope. Special techniques are used to ensure that the relative photometric calibration is better than 1% across the field of view. The absolute photometric accuracy from standard star measurements is found to be 6%. The absolute calibration is corrected using galaxy spectra, providing colors accurate to 2% or better. Stellar and galaxy colors and counts agree well with the expected values. Finally, as the first step in the scientific analysis of these data we construct panchromatic number counts which confirm that both the geometry of the universe and the galaxy population are evolving.
0

THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE

S. Lilly et al.Sep 15, 2009
+62
C
V
S
We present spectroscopic redshifts of a large sample of galaxies with IAB < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s−1, independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed.
0

THE CHANDRA COSMOS SURVEY. I. OVERVIEW AND POINT SOURCE CATALOG

M. Elvis et al.Aug 27, 2009
+40
C
F
M
The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra} program that has imaged the central 0.5 sq.deg of the COSMOS field (centered at 10h, +02deg) with an effective exposure of ~160ksec, and an outer 0.4sq.deg. area with an effective exposure of ~80ksec. The limiting source detection depths are 1.9e-16 erg cm(-2) s(-1) in the Soft (0.5-2 keV) band, 7.3e(-16) erg cm^-2 s^-1 in the Hard (2-10 keV) band, and 5.7e(-16) erg cm(-2) s(-1) in the Full (0.5-10 keV) band. Here we describe the strategy, design and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2e(-5) (1655 in the Full, 1340 in the Soft, and 1017 in the Hard bands). By using a grid of 36 heavily (~50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform (to 12%) exposure across the inner 0.5 sq.deg field was obtained, leading to a sharply defined lower flux limit. The widely different PSFs obtained in each exposure at each point in the field required a novel source detection method, because of the overlapping tiling strategy, which is described in a companion paper. (Puccetti et al. Paper II). This method produced reliable sources down to a 7-12 counts, as verified by the resulting logN-logS curve, with sub-arcsecond positions, enabling optical and infrared identifications of virtually all sources, as reported in a second companion paper (Civano et al. Paper III). The full catalog is described here in detail, and is available on-line.
0
Paper
Citation381
0
Save
0

zCOSMOS – 10k-bright spectroscopic sample

L. Pozzetti et al.Jun 7, 2010
+55
E
M
L
We present the Galaxy Stellar Mass Function (MF) up to z~1 from the zCOSMOS-bright 10k spectroscopic sample. We investigate the total MF and the contribution of ETGs and LTGs, defined by different criteria (SED, morphology or star formation). We unveil a galaxy bimodality in the global MF, better represented by 2 Schechter functions dominated by ETGs and LTGs, respectively. For the global population we confirm that low-mass galaxies number density increases later and faster than for massive galaxies. We find that the MF evolution at intermediate-low values of Mstar (logM<10.6) is mostly explained by the growth in stellar mass driven by smoothly decreasing star formation activities. The low residual evolution is consistent with ~0.16 merger per galaxy per Gyr (of which fewer than 0.1 are major). We find that ETGs increase in number density with cosmic time faster for decreasing Mstar, with a median "building redshift" increasing with mass, in contrast with hierarchical models. For LTGs we find that the number density of blue or spiral galaxies remains almost constant from z~1. Instead, the most extreme population of active star forming galaxies is rapidly decreasing in number density. We suggest a transformation from blue active spirals of intermediate mass into blue quiescent and successively (1-2 Gyr after) into red passive types. The complete morphological transformation into red spheroidals, required longer time-scales or follows after 1-2 Gyr. A continuous replacement of blue galaxies is expected by low-mass active spirals growing in stellar mass. We estimate that on average ~25% of blue galaxies is transforming into red per Gyr for logM<11. We conclude that the build-up of galaxies and ETGs follows the same downsizing trend with mass as the formation of their stars, converse to the trend predicted by current SAMs. We expect a negligible evolution of the global Galaxy Baryonic MF.
0
Citation373
0
Save
0

Euclid preparation

Alain Blanchard et al.Oct 1, 2020
+145
C
S
A
Aims. The Euclid space telescope will measure the shapes and redshifts of galaxies to reconstruct the expansion history of the Universe and the growth of cosmic structures. The estimation of the expected performance of the experiment, in terms of predicted constraints on cosmological parameters, has so far relied on various individual methodologies and numerical implementations, which were developed for different observational probes and for the combination thereof. In this paper we present validated forecasts, which combine both theoretical and observational ingredients for different cosmological probes. This work is presented to provide the community with reliable numerical codes and methods for Euclid cosmological forecasts. Methods. We describe in detail the methods adopted for Fisher matrix forecasts, which were applied to galaxy clustering, weak lensing, and the combination thereof. We estimated the required accuracy for Euclid forecasts and outline a methodology for their development. We then compare and improve different numerical implementations, reaching uncertainties on the errors of cosmological parameters that are less than the required precision in all cases. Furthermore, we provide details on the validated implementations, some of which are made publicly available, in different programming languages, together with a reference training-set of input and output matrices for a set of specific models. These can be used by the reader to validate their own implementations if required. Results. We present new cosmological forecasts for Euclid . We find that results depend on the specific cosmological model and remaining freedom in each setting, for example flat or non-flat spatial cosmologies, or different cuts at non-linear scales. The numerical implementations are now reliable for these settings. We present the results for an optimistic and a pessimistic choice for these types of settings. We demonstrate that the impact of cross-correlations is particularly relevant for models beyond a cosmological constant and may allow us to increase the dark energy figure of merit by at least a factor of three.
0

Euclid preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations

Mischa Knabenhans et al.May 14, 2021
+128
D
J
M
We present a new, updated version of the EuclidEmulator (called EuclidEmulator2), a fast and accurate predictor for the nonlinear correction of the matter power spectrum. Percent-level accurate emulation is now supported in the eight-dimensional parameter space of $w_0w_a$CDM$+\sum m_\nu$models between redshift $z=0$ and $z=3$ for spatial scales within the range 0.01 $h$/Mpc $\leq k \leq$ 10 $h$/Mpc. In order to achieve this level of accuracy, we have had to improve the quality of the underlying N-body simulations used as training data: (1) we use self-consistent linear evolution of non-dark matter species such as massive neutrinos, photons, dark energy and the metric field, (2) we perform the simulations in the so-called N-body gauge, which allows one to interpret the results in the framework of general relativity, (3) we run over 250 high-resolution simulations with $3000^3$ particles in boxes of 1 (Gpc/$h$)${}^3$ volumes based on paired-and-fixed initial conditions and (4) we provide a resolution correction that can be applied to emulated results as a post-processing step in order to drastically reduce systematic biases on small scales due to residual resolution effects in the simulations. We find that the inclusion of the dynamical dark energy parameter $w_a$ significantly increases the complexity and expense of creating the emulator. The high fidelity of EuclidEmulator2 is tested in various comparisons against N-body simulations as well as alternative fast predictors like Halofit, HMCode and CosmicEmu. A blind test is successfully performed against the Euclid Flagship v2.0 simulation. Nonlinear correction factors emulated with EuclidEmulator2 are accurate at the level of 1% or better for 0.01 $h$/Mpc $\leq k \leq$ 10 $h$/Mpc and $z\leq3$ compared to high-resolution dark matter only simulations. EuclidEmulator2 is publicly available at https://github.com/miknab/EuclidEmulator2 .
0

Euclid preparation

G. Desprez et al.Nov 25, 2020
+159
J
S
G
Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo- z ) measurements for the success of their main science objectives. However, to date, no method has been able to produce photo- z s at the required accuracy using only the broad-band photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2 − 2.6 redshift range that the Euclid mission will probe. We designed a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data was divided into two samples: one calibration sample for which photometry and redshifts were provided to the participants; and the validation sample, containing only the photometry to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and a PDZ for each source in the validation sample, along with a rejection flag that indicates the sources they consider unfit for use in cosmological analyses. The performance of each method was assessed through a set of informative metrics, using cross-matched spectroscopic and highly-accurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers, that is to say sources for which the photo- z deviates by more than 0.15(1 + z ) from the spectroscopic-redshift (spec- z ). We also show that, while all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. We find that no machine-learning method provides good results in the regions of galaxy color-space that are sparsely populated by spectroscopic-redshifts, for example z > 1. However they generally perform better than template-fitting methods at low redshift ( z < 0.7), indicating that template-fitting methods do not use all of the information contained in the photometry. We introduce metrics that quantify both photo- z precision and completeness of the samples (post-rejection), since both contribute to the final figure of merit of the science goals of the survey (e.g., cosmic shear from Euclid ). Template-fitting methods provide the best results in these metrics, but we show that a combination of template-fitting results and machine-learning results with rejection criteria can outperform any individual method. On this basis, we argue that further work in identifying how to best select between machine-learning and template-fitting approaches for each individual galaxy should be pursued as a priority.
0

Euclid preparation

A. Jaffe et al.Jan 1, 2022
+195
C
N
A
The combination and cross-correlation of the upcoming Euclid data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of Euclid and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on Euclid -specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and future CMB experiments, the predicted constraints are obtained from both a standard Fisher formalism and a posterior-fitting approach based on actual CMB data. Compared to a Euclid -only analysis, the addition of CMB data leads to a substantial impact on constraints for all cosmological parameters of the standard Λ-cold-dark-matter model, with improvements reaching up to a factor of ten. For the parameters of extended models, which include a redshift-dependent dark energy equation of state, non-zero curvature, and a phenomenological modification of gravity, improvements can be of the order of two to three, reaching higher than ten in some cases. The results highlight the crucial importance for cosmological constraints of the combination and cross-correlation of Euclid probes with CMB data.
0

Euclid preparation

Francesca Lepori et al.Jun 1, 2022
+174
C
I
F
Aims. We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the photometric sample of Euclid . Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the estimation of the best fitting cosmological parameters that we expect if this effect is neglected. Methods. We follow the prescriptions of the official Euclid Fisher matrix forecast for the photometric galaxy clustering analysis and the combination of photometric clustering and cosmic shear. The slope of the luminosity function (local count slope), which regulates the amplitude of the lensing magnification, and the galaxy bias have been estimated from the Euclid Flagship simulation. Results. We find that magnification significantly affects both the best-fit estimation of cosmological parameters and the constraints in the galaxy clustering analysis of the photometric sample. In particular, including magnification in the analysis reduces the 1 σ errors on Ω m, 0 , w 0 , w a at the level of 20–35%, depending on how well we will be able to independently measure the local count slope. In addition, we find that neglecting magnification in the clustering analysis leads to shifts of up to 1.6 σ in the best-fit parameters. In the joint analysis of galaxy clustering, cosmic shear, and galaxy–galaxy lensing, magnification does not improve precision, but it leads to an up to 6 σ bias if neglected. Therefore, for all models considered in this work, magnification has to be included in the analysis of galaxy clustering and its cross-correlation with the shear signal (3 × 2pt analysis) for an accurate parameter estimation.
0

Euclid preparation

V. Guglielmo et al.Oct 1, 2020
+137
F
R
V
The Complete Calibration of the Colour-Redshift Relation survey (C3R2) is a spectroscopic effort involving ESO and Keck facilities designed to empirically calibrate the galaxy colour-redshift relation - P(z|C) to the Euclid depth (i_AB=24.5) and is intimately linked to upcoming Stage IV dark energy missions based on weak lensing cosmology. The aim is to build a spectroscopic calibration sample that is as representative as possible of the galaxies of the Euclid weak lensing sample. In order to minimise the number of spectroscopic observations to fill the gaps in current knowledge of the P(z|C), self-organising map (SOM) representations of the galaxy colour space have been constructed. Here we present the first results of an ESO@ VLT Large Programme approved in the context of C3R2, which makes use of the two VLT optical and near-infrared multi-object spectrographs, FORS2 and KMOS. This paper focuses on high-quality spectroscopic redshifts of high-z galaxies observed with the KMOS spectrograph in the H- and K-bands. A total of 424 highly-reliable z are measured in the 1.3<=z<=2.5 range, with total success rates of 60.7% in the H-band and 32.8% in the K-band. The newly determined z fill 55% of high and 35% of lower priority empty SOM grid cells. We measured Halpha fluxes in a 1."2 radius aperture from the spectra of the spectroscopically confirmed galaxies and converted them into star formation rates. In addition, we performed an SED fitting analysis on the same sample in order to derive stellar masses, E(B-V), total magnitudes, and SFRs. We combine the results obtained from the spectra with those derived via SED fitting, and we show that the spectroscopic failures come from either weakly star-forming galaxies (at z<1.7, i.e. in the H-band) or low S/N spectra (in the K-band) of z>2 galaxies.
Load More