NA
N. Auricchio
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
47
(79% Open Access)
Cited by:
528
h-index:
27
/
i10-index:
84
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Euclid preparation

R. Scaramella et al.Feb 15, 2022
Euclid is an ESA mission designed to constrain the properties of dark energy and gravity via weak gravitational lensing and galaxy clustering. It will carry out a wide area imaging and spectroscopy survey (EWS) in visible and near-infrared, covering roughly 15,000 square degrees of extragalactic sky on six years. The wide-field telescope and instruments are optimized for pristine PSF and reduced straylight, producing very crisp images. This paper presents the building of the Euclid reference survey: the sequence of pointings of EWS, Deep fields, Auxiliary fields for calibrations, and spacecraft movements followed by Euclid as it operates in a step-and-stare mode from its orbit around the Lagrange point L2. Each EWS pointing has four dithered frames; we simulate the dither pattern at pixel level to analyse the effective coverage. We use up-to-date models for the sky background to define the Euclid region-of-interest (RoI). The building of the reference survey is highly constrained from calibration cadences, spacecraft constraints and background levels; synergies with ground-based coverage are also considered. Via purposely-built software optimized to prioritize best sky areas, produce a compact coverage, and ensure thermal stability, we generate a schedule for the Auxiliary and Deep fields observations and schedule the RoI with EWS transit observations. The resulting reference survey RSD_2021A fulfills all constraints and is a good proxy for the final solution. Its wide survey covers 14,500 square degrees. The limiting AB magnitudes ($5\sigma$ point-like source) achieved in its footprint are estimated to be 26.2 (visible) and 24.5 (near-infrared); for spectroscopy, the H$_\alpha$ line flux limit is $2\times 10^{-16}$ erg cm$^{-2}$ s$^{-1}$ at 1600 nm; and for diffuse emission the surface brightness limits are 29.8 (visible) and 28.4 (near-infrared) mag arcsec$^{-2}$.
0

Euclid preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations

Mischa Knabenhans et al.May 14, 2021
We present a new, updated version of the EuclidEmulator (called EuclidEmulator2), a fast and accurate predictor for the nonlinear correction of the matter power spectrum. Percent-level accurate emulation is now supported in the eight-dimensional parameter space of $w_0w_a$CDM$+\sum m_\nu$models between redshift $z=0$ and $z=3$ for spatial scales within the range 0.01 $h$/Mpc $\leq k \leq$ 10 $h$/Mpc. In order to achieve this level of accuracy, we have had to improve the quality of the underlying N-body simulations used as training data: (1) we use self-consistent linear evolution of non-dark matter species such as massive neutrinos, photons, dark energy and the metric field, (2) we perform the simulations in the so-called N-body gauge, which allows one to interpret the results in the framework of general relativity, (3) we run over 250 high-resolution simulations with $3000^3$ particles in boxes of 1 (Gpc/$h$)${}^3$ volumes based on paired-and-fixed initial conditions and (4) we provide a resolution correction that can be applied to emulated results as a post-processing step in order to drastically reduce systematic biases on small scales due to residual resolution effects in the simulations. We find that the inclusion of the dynamical dark energy parameter $w_a$ significantly increases the complexity and expense of creating the emulator. The high fidelity of EuclidEmulator2 is tested in various comparisons against N-body simulations as well as alternative fast predictors like Halofit, HMCode and CosmicEmu. A blind test is successfully performed against the Euclid Flagship v2.0 simulation. Nonlinear correction factors emulated with EuclidEmulator2 are accurate at the level of 1% or better for 0.01 $h$/Mpc $\leq k \leq$ 10 $h$/Mpc and $z\leq3$ compared to high-resolution dark matter only simulations. EuclidEmulator2 is publicly available at https://github.com/miknab/EuclidEmulator2 .
0

Euclid preparation

G. Desprez et al.Nov 25, 2020
Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo- z ) measurements for the success of their main science objectives. However, to date, no method has been able to produce photo- z s at the required accuracy using only the broad-band photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2 − 2.6 redshift range that the Euclid mission will probe. We designed a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data was divided into two samples: one calibration sample for which photometry and redshifts were provided to the participants; and the validation sample, containing only the photometry to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and a PDZ for each source in the validation sample, along with a rejection flag that indicates the sources they consider unfit for use in cosmological analyses. The performance of each method was assessed through a set of informative metrics, using cross-matched spectroscopic and highly-accurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers, that is to say sources for which the photo- z deviates by more than 0.15(1 + z ) from the spectroscopic-redshift (spec- z ). We also show that, while all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. We find that no machine-learning method provides good results in the regions of galaxy color-space that are sparsely populated by spectroscopic-redshifts, for example z > 1. However they generally perform better than template-fitting methods at low redshift ( z < 0.7), indicating that template-fitting methods do not use all of the information contained in the photometry. We introduce metrics that quantify both photo- z precision and completeness of the samples (post-rejection), since both contribute to the final figure of merit of the science goals of the survey (e.g., cosmic shear from Euclid ). Template-fitting methods provide the best results in these metrics, but we show that a combination of template-fitting results and machine-learning results with rejection criteria can outperform any individual method. On this basis, we argue that further work in identifying how to best select between machine-learning and template-fitting approaches for each individual galaxy should be pursued as a priority.
0

Euclid preparation

A. Jaffe et al.Jan 1, 2022
The combination and cross-correlation of the upcoming Euclid data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of Euclid and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on Euclid -specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and future CMB experiments, the predicted constraints are obtained from both a standard Fisher formalism and a posterior-fitting approach based on actual CMB data. Compared to a Euclid -only analysis, the addition of CMB data leads to a substantial impact on constraints for all cosmological parameters of the standard Λ-cold-dark-matter model, with improvements reaching up to a factor of ten. For the parameters of extended models, which include a redshift-dependent dark energy equation of state, non-zero curvature, and a phenomenological modification of gravity, improvements can be of the order of two to three, reaching higher than ten in some cases. The results highlight the crucial importance for cosmological constraints of the combination and cross-correlation of Euclid probes with CMB data.
0

Euclid: Forecast constraints on the cosmic distance duality relation with complementary external probes

Matteo Martinelli et al.Dec 1, 2020
Context. In metric theories of gravity with photon number conservation, the luminosity and angular diameter distances are related via the Etherington relation, also known as the distance duality relation (DDR). A violation of this relation would rule out the standard cosmological paradigm and point to the presence of new physics. Aims. We quantify the ability of Euclid , in combination with contemporary surveys, to improve the current constraints on deviations from the DDR in the redshift range 0 < z < 1.6. Methods. We start with an analysis of the latest available data, improving previously reported constraints by a factor of 2.5. We then present a detailed analysis of simulated Euclid and external data products, using both standard parametric methods (relying on phenomenological descriptions of possible DDR violations) and a machine learning reconstruction using genetic algorithms. Results. We find that for parametric methods Euclid can (in combination with external probes) improve current constraints by approximately a factor of six, while for non-parametric methods Euclid can improve current constraints by a factor of three. Conclusions. Our results highlight the importance of surveys like Euclid in accurately testing the pillars of the current cosmological paradigm and constraining physics beyond the standard cosmological model.
0
Citation23
0
Save
0

Euclid preparation

Alejandro Borlaff et al.Jan 1, 2022
Context. While Euclid is an ESA mission specifically designed to investigate the nature of dark energy and dark matter, the planned unprecedented combination of survey area (∼15 000 deg 2 ), spatial resolution, low sky-background, and depth also make Euclid an excellent space observatory for the study of the low surface brightness Universe. Scientific exploitation of the extended low surface brightness structures requires dedicated calibration procedures that are yet to be tested. Aims. We investigate the capabilities of Euclid to detect extended low surface brightness structure by identifying and quantifying sky-background sources and stray-light contamination. We test the feasibility of generating sky flat-fields to reduce large-scale residual gradients in order to reveal the extended emission of galaxies observed in the Euclid survey. Methods. We simulated a realistic set of Euclid /VIS observations, taking into account both instrumental and astronomical sources of contamination, including cosmic rays, stray-light, zodiacal light, interstellar medium, and the cosmic infrared background, while simulating the effects of background sources in the field of view. Results. We demonstrate that a combination of calibration lamps, sky flats, and self-calibration would enable recovery of emission at a limiting surface brightness magnitude of μ lim = 29.5 −0.27 +0.08 mag arcsec −2 (3 σ , 10 × 10 arcsec 2 ) in the Wide Survey, and it would reach regions deeper by 2 mag in the Deep Surveys. Conclusions.Euclid /VIS has the potential to be an excellent low surface brightness observatory. Covering the gap between pixel-to-pixel calibration lamp flats and self-calibration observations for large scales, the application of sky flat-fielding will enhance the sensitivity of the VIS detector at scales larger than 1″, up to the size of the field of view, enabling Euclid to detect extended surface brightness structures below μ lim = 31 mag arcsec −2 and beyond.
0

Euclid: Constraining dark energy coupled to electromagnetism using astrophysical and laboratory data

Matteo Martinelli et al.Oct 1, 2021
In physically realistic scalar-field based dynamical dark energy models (including, e.g., quintessence) one naturally expects the scalar field to couple to the rest of the model's degrees of freedom. In particular, a coupling to the electromagnetic sector leads to a time (redshift) dependence of the fine-structure constant and a violation of the Weak Equivalence Principle. Here we extend the previous Euclid forecast constraints on dark energy models to this enlarged (but physically more realistic) parameter space, and forecast how well Euclid, together with high-resolution spectroscopic data and local experiments, can constrain these models. Our analysis combines simulated Euclid data products with astrophysical measurements of the fine-structure constant, $\alpha$, and local experimental constraints, and includes both parametric and non-parametric methods. For the astrophysical measurements of $\alpha$ we consider both the currently available data and a simulated dataset representative of Extremely Large Telescope measurements and expected to be available in the 2030s. Our parametric analysis shows that in the latter case the inclusion of astrophysical and local data improves the Euclid dark energy figure of merit by between $8\%$ and $26\%$, depending on the correct fiducial model, with the improvements being larger in the null case where the fiducial coupling to the electromagnetic sector is vanishing. These improvements would be smaller with the current astrophysical data. Moreover, we illustrate how a genetic algorithms based reconstruction provides a null test for the presence of the coupling. Our results highlight the importance of complementing surveys like Euclid with external data products, in order to accurately test the wider parameter spaces of physically motivated paradigms.
0

Euclid preparation

V. Guglielmo et al.Oct 1, 2020
The Complete Calibration of the Colour-Redshift Relation survey (C3R2) is a spectroscopic effort involving ESO and Keck facilities designed to empirically calibrate the galaxy colour-redshift relation - P(z|C) to the Euclid depth (i_AB=24.5) and is intimately linked to upcoming Stage IV dark energy missions based on weak lensing cosmology. The aim is to build a spectroscopic calibration sample that is as representative as possible of the galaxies of the Euclid weak lensing sample. In order to minimise the number of spectroscopic observations to fill the gaps in current knowledge of the P(z|C), self-organising map (SOM) representations of the galaxy colour space have been constructed. Here we present the first results of an ESO@ VLT Large Programme approved in the context of C3R2, which makes use of the two VLT optical and near-infrared multi-object spectrographs, FORS2 and KMOS. This paper focuses on high-quality spectroscopic redshifts of high-z galaxies observed with the KMOS spectrograph in the H- and K-bands. A total of 424 highly-reliable z are measured in the 1.3<=z<=2.5 range, with total success rates of 60.7% in the H-band and 32.8% in the K-band. The newly determined z fill 55% of high and 35% of lower priority empty SOM grid cells. We measured Halpha fluxes in a 1."2 radius aperture from the spectra of the spectroscopically confirmed galaxies and converted them into star formation rates. In addition, we performed an SED fitting analysis on the same sample in order to derive stellar masses, E(B-V), total magnitudes, and SFRs. We combine the results obtained from the spectra with those derived via SED fitting, and we show that the spectroscopic failures come from either weakly star-forming galaxies (at z<1.7, i.e. in the H-band) or low S/N spectra (in the K-band) of z>2 galaxies.
0

Euclid: The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments

Anurag Deshpande et al.Apr 1, 2020
Stage IV weak lensing experiments will offer more than an order of magnitude leap in precision. We must therefore ensure that our analyses remain accurate in this new era. Accordingly, previously ignored systematic effects must be addressed. In this work, we evaluate the impact of the reduced shear approximation and magnification bias, on the information obtained from the angular power spectrum. To first-order, the statistics of reduced shear, a combination of shear and convergence, are taken to be equal to those of shear. However, this approximation can induce a bias in the cosmological parameters that can no longer be neglected. A separate bias arises from the statistics of shear being altered by the preferential selection of galaxies and the dilution of their surface densities, in high-magnification regions. The corrections for these systematic effects take similar forms, allowing them to be treated together. We calculated the impact of neglecting these effects on the cosmological parameters that would be determined from Euclid, using cosmic shear tomography. To do so, we employed the Fisher matrix formalism, and included the impact of the super-sample covariance. We also demonstrate how the reduced shear correction can be calculated using a lognormal field forward modelling approach. These effects cause significant biases in Omega_m, sigma_8, n_s, Omega_DE, w_0, and w_a of -0.53 sigma, 0.43 sigma, -0.34 sigma, 1.36 sigma, -0.68 sigma, and 1.21 sigma, respectively. We then show that these lensing biases interact with another systematic: the intrinsic alignment of galaxies. Accordingly, we develop the formalism for an intrinsic alignment-enhanced lensing bias correction. Applying this to Euclid, we find that the additional terms introduced by this correction are sub-dominant.
0

Euclidpreparation

A. Pocino et al.Nov 1, 2021
The accuracy of photometric redshifts (photo-zs) particularly affects the results of the analyses of galaxy clustering with photometrically-selected galaxies (GCph) and weak lensing. In the next decade, space missions like Euclid will collect photometric measurements for millions of galaxies. These data should be complemented with upcoming ground-based observations to derive precise and accurate photo-zs. In this paper, we explore how the tomographic redshift binning and depth of ground-based observations will affect the cosmological constraints expected from Euclid. We focus on GCph and extend the study to include galaxy-galaxy lensing (GGL). We add a layer of complexity to the analysis by simulating several realistic photo-z distributions based on the Euclid Consortium Flagship simulation and using a machine learning photo-z algorithm. We use the Fisher matrix formalism and these galaxy samples to study the cosmological constraining power as a function of redshift binning, survey depth, and photo-z accuracy. We find that bins with equal width in redshift provide a higher Figure of Merit (FoM) than equipopulated bins and that increasing the number of redshift bins from 10 to 13 improves the FoM by 35% and 15% for GCph and its combination with GGL, respectively. For GCph, an increase of the survey depth provides a higher FoM. But the addition of faint galaxies beyond the limit of the spectroscopic training data decreases the FoM due to the spurious photo-zs. When combining both probes, the number density of the sample, which is set by the survey depth, is the main factor driving the variations in the FoM. We conclude that there is more information that can be extracted beyond the nominal 10 tomographic redshift bins of Euclid and that we should be cautious when adding faint galaxies into our sample, since they can degrade the cosmological constraints.
Load More