GG
G. Gozaliasl
Author with expertise in Astronomical Instrumentation and Spectroscopy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
21
(95% Open Access)
Cited by:
1,067
h-index:
18
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans

Michael Roberts et al.Mar 15, 2021
+50
M
D
M
Machine learning methods offer great promise for fast and accurate detection and prognostication of COVID-19 from standard-of-care chest radiographs (CXR) and computed tomography (CT) images. Many articles have been published in 2020 describing new machine learning-based models for both of these tasks, but it is unclear which are of potential clinical utility. In this systematic review, we search EMBASE via OVID, MEDLINE via PubMed, bioRxiv, medRxiv and arXiv for published papers and preprints uploaded from January 1, 2020 to October 3, 2020 which describe new machine learning models for the diagnosis or prognosis of COVID-19 from CXR or CT images. Our search identified 2,212 studies, of which 415 were included after initial screening and, after quality screening, 61 studies were included in this systematic review. Our review finds that none of the models identified are of potential clinical use due to methodological flaws and/or underlying biases. This is a major weakness, given the urgency with which validated COVID-19 models are needed. To address this, we give many recommendations which, if followed, will solve these issues and lead to higher quality model development and well documented manuscripts.
0
Citation836
0
Save
0

Euclid preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations

Mischa Knabenhans et al.May 14, 2021
+128
D
J
M
We present a new, updated version of the EuclidEmulator (called EuclidEmulator2), a fast and accurate predictor for the nonlinear correction of the matter power spectrum. Percent-level accurate emulation is now supported in the eight-dimensional parameter space of $w_0w_a$CDM$+\sum m_\nu$models between redshift $z=0$ and $z=3$ for spatial scales within the range 0.01 $h$/Mpc $\leq k \leq$ 10 $h$/Mpc. In order to achieve this level of accuracy, we have had to improve the quality of the underlying N-body simulations used as training data: (1) we use self-consistent linear evolution of non-dark matter species such as massive neutrinos, photons, dark energy and the metric field, (2) we perform the simulations in the so-called N-body gauge, which allows one to interpret the results in the framework of general relativity, (3) we run over 250 high-resolution simulations with $3000^3$ particles in boxes of 1 (Gpc/$h$)${}^3$ volumes based on paired-and-fixed initial conditions and (4) we provide a resolution correction that can be applied to emulated results as a post-processing step in order to drastically reduce systematic biases on small scales due to residual resolution effects in the simulations. We find that the inclusion of the dynamical dark energy parameter $w_a$ significantly increases the complexity and expense of creating the emulator. The high fidelity of EuclidEmulator2 is tested in various comparisons against N-body simulations as well as alternative fast predictors like Halofit, HMCode and CosmicEmu. A blind test is successfully performed against the Euclid Flagship v2.0 simulation. Nonlinear correction factors emulated with EuclidEmulator2 are accurate at the level of 1% or better for 0.01 $h$/Mpc $\leq k \leq$ 10 $h$/Mpc and $z\leq3$ compared to high-resolution dark matter only simulations. EuclidEmulator2 is publicly available at https://github.com/miknab/EuclidEmulator2 .
0

Euclid preparation

G. Desprez et al.Nov 25, 2020
+159
J
S
G
Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo- z ) measurements for the success of their main science objectives. However, to date, no method has been able to produce photo- z s at the required accuracy using only the broad-band photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2 − 2.6 redshift range that the Euclid mission will probe. We designed a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data was divided into two samples: one calibration sample for which photometry and redshifts were provided to the participants; and the validation sample, containing only the photometry to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and a PDZ for each source in the validation sample, along with a rejection flag that indicates the sources they consider unfit for use in cosmological analyses. The performance of each method was assessed through a set of informative metrics, using cross-matched spectroscopic and highly-accurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers, that is to say sources for which the photo- z deviates by more than 0.15(1 + z ) from the spectroscopic-redshift (spec- z ). We also show that, while all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. We find that no machine-learning method provides good results in the regions of galaxy color-space that are sparsely populated by spectroscopic-redshifts, for example z > 1. However they generally perform better than template-fitting methods at low redshift ( z < 0.7), indicating that template-fitting methods do not use all of the information contained in the photometry. We introduce metrics that quantify both photo- z precision and completeness of the samples (post-rejection), since both contribute to the final figure of merit of the science goals of the survey (e.g., cosmic shear from Euclid ). Template-fitting methods provide the best results in these metrics, but we show that a combination of template-fitting results and machine-learning results with rejection criteria can outperform any individual method. On this basis, we argue that further work in identifying how to best select between machine-learning and template-fitting approaches for each individual galaxy should be pursued as a priority.
0

Euclid preparation

A. Jaffe et al.Jan 1, 2022
+195
C
N
A
The combination and cross-correlation of the upcoming Euclid data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of Euclid and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on Euclid -specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and future CMB experiments, the predicted constraints are obtained from both a standard Fisher formalism and a posterior-fitting approach based on actual CMB data. Compared to a Euclid -only analysis, the addition of CMB data leads to a substantial impact on constraints for all cosmological parameters of the standard Λ-cold-dark-matter model, with improvements reaching up to a factor of ten. For the parameters of extended models, which include a redshift-dependent dark energy equation of state, non-zero curvature, and a phenomenological modification of gravity, improvements can be of the order of two to three, reaching higher than ten in some cases. The results highlight the crucial importance for cosmological constraints of the combination and cross-correlation of Euclid probes with CMB data.
0

Euclid preparation

Francesca Lepori et al.Jun 1, 2022
+174
C
I
F
Aims. We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the photometric sample of Euclid . Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the estimation of the best fitting cosmological parameters that we expect if this effect is neglected. Methods. We follow the prescriptions of the official Euclid Fisher matrix forecast for the photometric galaxy clustering analysis and the combination of photometric clustering and cosmic shear. The slope of the luminosity function (local count slope), which regulates the amplitude of the lensing magnification, and the galaxy bias have been estimated from the Euclid Flagship simulation. Results. We find that magnification significantly affects both the best-fit estimation of cosmological parameters and the constraints in the galaxy clustering analysis of the photometric sample. In particular, including magnification in the analysis reduces the 1 σ errors on Ω m, 0 , w 0 , w a at the level of 20–35%, depending on how well we will be able to independently measure the local count slope. In addition, we find that neglecting magnification in the clustering analysis leads to shifts of up to 1.6 σ in the best-fit parameters. In the joint analysis of galaxy clustering, cosmic shear, and galaxy–galaxy lensing, magnification does not improve precision, but it leads to an up to 6 σ bias if neglected. Therefore, for all models considered in this work, magnification has to be included in the analysis of galaxy clustering and its cross-correlation with the shear signal (3 × 2pt analysis) for an accurate parameter estimation.
0

Euclid preparation

Alejandro Borlaff et al.Jan 1, 2022
+168
B
P
A
Context. While Euclid is an ESA mission specifically designed to investigate the nature of dark energy and dark matter, the planned unprecedented combination of survey area (∼15 000 deg 2 ), spatial resolution, low sky-background, and depth also make Euclid an excellent space observatory for the study of the low surface brightness Universe. Scientific exploitation of the extended low surface brightness structures requires dedicated calibration procedures that are yet to be tested. Aims. We investigate the capabilities of Euclid to detect extended low surface brightness structure by identifying and quantifying sky-background sources and stray-light contamination. We test the feasibility of generating sky flat-fields to reduce large-scale residual gradients in order to reveal the extended emission of galaxies observed in the Euclid survey. Methods. We simulated a realistic set of Euclid /VIS observations, taking into account both instrumental and astronomical sources of contamination, including cosmic rays, stray-light, zodiacal light, interstellar medium, and the cosmic infrared background, while simulating the effects of background sources in the field of view. Results. We demonstrate that a combination of calibration lamps, sky flats, and self-calibration would enable recovery of emission at a limiting surface brightness magnitude of μ lim = 29.5 −0.27 +0.08 mag arcsec −2 (3 σ , 10 × 10 arcsec 2 ) in the Wide Survey, and it would reach regions deeper by 2 mag in the Deep Surveys. Conclusions.Euclid /VIS has the potential to be an excellent low surface brightness observatory. Covering the gap between pixel-to-pixel calibration lamp flats and self-calibration observations for large scales, the application of sky flat-fielding will enhance the sensitivity of the VIS detector at scales larger than 1″, up to the size of the field of view, enabling Euclid to detect extended surface brightness structures below μ lim = 31 mag arcsec −2 and beyond.
0

Euclid preparation

V. Guglielmo et al.Oct 1, 2020
+137
F
R
V
The Complete Calibration of the Colour-Redshift Relation survey (C3R2) is a spectroscopic effort involving ESO and Keck facilities designed to empirically calibrate the galaxy colour-redshift relation - P(z|C) to the Euclid depth (i_AB=24.5) and is intimately linked to upcoming Stage IV dark energy missions based on weak lensing cosmology. The aim is to build a spectroscopic calibration sample that is as representative as possible of the galaxies of the Euclid weak lensing sample. In order to minimise the number of spectroscopic observations to fill the gaps in current knowledge of the P(z|C), self-organising map (SOM) representations of the galaxy colour space have been constructed. Here we present the first results of an ESO@ VLT Large Programme approved in the context of C3R2, which makes use of the two VLT optical and near-infrared multi-object spectrographs, FORS2 and KMOS. This paper focuses on high-quality spectroscopic redshifts of high-z galaxies observed with the KMOS spectrograph in the H- and K-bands. A total of 424 highly-reliable z are measured in the 1.3<=z<=2.5 range, with total success rates of 60.7% in the H-band and 32.8% in the K-band. The newly determined z fill 55% of high and 35% of lower priority empty SOM grid cells. We measured Halpha fluxes in a 1."2 radius aperture from the spectra of the spectroscopically confirmed galaxies and converted them into star formation rates. In addition, we performed an SED fitting analysis on the same sample in order to derive stellar masses, E(B-V), total magnitudes, and SFRs. We combine the results obtained from the spectra with those derived via SED fitting, and we show that the spectroscopic failures come from either weakly star-forming galaxies (at z<1.7, i.e. in the H-band) or low S/N spectra (in the K-band) of z>2 galaxies.
0

Euclidpreparation

A. Pocino et al.Nov 1, 2021
+148
F
I
A
The accuracy of photometric redshifts (photo-zs) particularly affects the results of the analyses of galaxy clustering with photometrically-selected galaxies (GCph) and weak lensing. In the next decade, space missions like Euclid will collect photometric measurements for millions of galaxies. These data should be complemented with upcoming ground-based observations to derive precise and accurate photo-zs. In this paper, we explore how the tomographic redshift binning and depth of ground-based observations will affect the cosmological constraints expected from Euclid. We focus on GCph and extend the study to include galaxy-galaxy lensing (GGL). We add a layer of complexity to the analysis by simulating several realistic photo-z distributions based on the Euclid Consortium Flagship simulation and using a machine learning photo-z algorithm. We use the Fisher matrix formalism and these galaxy samples to study the cosmological constraining power as a function of redshift binning, survey depth, and photo-z accuracy. We find that bins with equal width in redshift provide a higher Figure of Merit (FoM) than equipopulated bins and that increasing the number of redshift bins from 10 to 13 improves the FoM by 35% and 15% for GCph and its combination with GGL, respectively. For GCph, an increase of the survey depth provides a higher FoM. But the addition of faint galaxies beyond the limit of the spectroscopic training data decreases the FoM due to the spurious photo-zs. When combining both probes, the number density of the sample, which is set by the survey depth, is the main factor driving the variations in the FoM. We conclude that there is more information that can be extracted beyond the nominal 10 tomographic redshift bins of Euclid and that we should be cautious when adding faint galaxies into our sample, since they can degrade the cosmological constraints.
0

JWST and ALMA Discern the Assembly of Structural and Obscured Components in a High-redshift Starburst Galaxy

Zhaoxuan Liu et al.Jun 1, 2024
+27
E
J
Z
Abstract We present observations and analysis of the starburst PACS-819 at z = 1.45 ( M * = 10 10.7 M ⊙ ), using high-resolution (0.″1; 0.8 kpc) Atacama Large Millimeter/submillimeter Array (ALMA) and multiwavelength JWST images from the COSMOS-Web program. Dissimilar to Hubble Space Telescope (HST) ACS images in the rest-frame UV, the redder NIRCam and MIRI images reveal a smooth central mass concentration and spiral-like features, atypical for such an intense starburst. Through dynamical modeling of the CO ( J = 5–4) emission with ALMA, PACS-819 is rotation dominated and thus consistent with having a disk-like nature. However, kinematic anomalies in CO and asymmetric features in the bluer JWST bands (e.g., F150W) support a more disturbed nature likely due to interactions. The JWST imaging further enables us to map the distribution of stellar mass and dust attenuation, thus clarifying the relationships between different structural components not discernible in the previous HST images. The CO ( J = 5–4) and far-infrared dust continuum emission are cospatial with a heavily obscured starbursting core (<1 kpc) that is partially surrounded by much less obscured star-forming structures including a prominent arc, possibly a tidally distorted dwarf galaxy, and a massive clump (detected in CO), likely a recently accreted low-mass satellite. With spatially resolved maps, we find a high molecular gas fraction in the central area reaching ∼3 ( M gas / M * ) and short depletion times ( M gas /SFR ∼ 120 Myr, where SFR is star formation rate) across the entire system. These observations provide insights into the complex nature of starbursts in the distant Universe and underscore the wealth of complementary information from high-resolution observations with both ALMA and JWST.
0

Euclid preparation. The Near-IR Background Dipole Experiment with Euclid

Euclid Collaboration et al.Jan 31, 2024
+202
R
A
E
Verifying the fully kinematic nature of the cosmic microwave background (CMB) dipole is of fundamental importance in cosmology. In the standard cosmological model with the Friedman-Lemaitre-Robertson-Walker (FLRW) metric from the inflationary expansion the CMB dipole should be entirely kinematic. Any non-kinematic CMB dipole component would thus reflect the preinflationary structure of spacetime probing the extent of the FLRW applicability. Cosmic backgrounds from galaxies after the matter-radiation decoupling, should have kinematic dipole component identical in velocity with the CMB kinematic dipole. Comparing the two can lead to isolating the CMB non-kinematic dipole. It was recently proposed that such measurement can be done using the near-IR cosmic infrared background (CIB) measured with the currently operating Euclid telescope, and later with Roman. The proposed method reconstructs the resolved CIB, the Integrated Galaxy Light (IGL), from Euclid's Wide Survey and probes its dipole, with a kinematic component amplified over that of the CMB by the Compton-Getting effect. The amplification coupled with the extensive galaxy samples forming the IGL would determine the CIB dipole with an overwhelming signal/noise, isolating its direction to sub-degree accuracy. We develop details of the method for Euclid's Wide Survey in 4 bands spanning 0.6 to 2 mic. We isolate the systematic and other uncertainties and present methodologies to minimize them, after confining the sample to the magnitude range with negligible IGL/CIB dipole from galaxy clustering. These include the required star-galaxy separation, accounting for the extinction correction dipole using the method newly developed here achieving total separation, accounting for the Earth's orbital motion and other systematic effects. (Abridged)
0
Citation1
0
Save
Load More