JA
Julian Adamek
Author with expertise in Cosmological Parameters and Dark Energy
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
451
h-index:
19
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Euclid preparation

Francesca Lepori et al.Jun 1, 2022
Aims. We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the photometric sample of Euclid . Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the estimation of the best fitting cosmological parameters that we expect if this effect is neglected. Methods. We follow the prescriptions of the official Euclid Fisher matrix forecast for the photometric galaxy clustering analysis and the combination of photometric clustering and cosmic shear. The slope of the luminosity function (local count slope), which regulates the amplitude of the lensing magnification, and the galaxy bias have been estimated from the Euclid Flagship simulation. Results. We find that magnification significantly affects both the best-fit estimation of cosmological parameters and the constraints in the galaxy clustering analysis of the photometric sample. In particular, including magnification in the analysis reduces the 1 σ errors on Ω m, 0 , w 0 , w a at the level of 20–35%, depending on how well we will be able to independently measure the local count slope. In addition, we find that neglecting magnification in the clustering analysis leads to shifts of up to 1.6 σ in the best-fit parameters. In the joint analysis of galaxy clustering, cosmic shear, and galaxy–galaxy lensing, magnification does not improve precision, but it leads to an up to 6 σ bias if neglected. Therefore, for all models considered in this work, magnification has to be included in the analysis of galaxy clustering and its cross-correlation with the shear signal (3 × 2pt analysis) for an accurate parameter estimation.
0

Towards Cosmography of the Local Universe

Julian Adamek et al.Jun 4, 2024
Anisotropies in the distance-redshift relation of cosmological sources are expected due to large-scale inhomogeneities in the local Universe. When the observed sources are tracing a large-scale matter flow in a general spacetime geometry, the distance-redshift relation with its anisotropies can be described with a geometrical prediction that generalises the well-known Friedmann-Lemaître-Robertson-Walker result. Furthermore, it turns out that a finite set of multipole coefficients contain the full information about a finite-order truncation of the distance-redshift relation of a given observer. The multipoles of the distance-redshift relation are interesting new cosmological observables that have a direct physical interpretation in terms of kinematical quantities of the underlying matter flow. Using light cones extracted from N-body simulations we quantify the anisotropies expected in a Λ cold dark matter cosmology by running a Markov chain Monte Carlo analysis on the observed data. In this observational approach the survey selection implements an implicit smoothing scale over which the effective rest frame of matter is fitted. The perceived anisotropy therefore depends significantly on the redshift range and distribution of sources. We find that the multipoles of the expansion rate, as well as the observer’s velocity with respect to the large-scale matter flow, can be determined robustly with our approach.