AK
A. Kiessling
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
29
(93% Open Access)
Cited by:
99
h-index:
27
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Euclid preparation

Francesca Lepori et al.Jun 1, 2022
+174
C
I
F
Aims. We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the photometric sample of Euclid . Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the estimation of the best fitting cosmological parameters that we expect if this effect is neglected. Methods. We follow the prescriptions of the official Euclid Fisher matrix forecast for the photometric galaxy clustering analysis and the combination of photometric clustering and cosmic shear. The slope of the luminosity function (local count slope), which regulates the amplitude of the lensing magnification, and the galaxy bias have been estimated from the Euclid Flagship simulation. Results. We find that magnification significantly affects both the best-fit estimation of cosmological parameters and the constraints in the galaxy clustering analysis of the photometric sample. In particular, including magnification in the analysis reduces the 1 σ errors on Ω m, 0 , w 0 , w a at the level of 20–35%, depending on how well we will be able to independently measure the local count slope. In addition, we find that neglecting magnification in the clustering analysis leads to shifts of up to 1.6 σ in the best-fit parameters. In the joint analysis of galaxy clustering, cosmic shear, and galaxy–galaxy lensing, magnification does not improve precision, but it leads to an up to 6 σ bias if neglected. Therefore, for all models considered in this work, magnification has to be included in the analysis of galaxy clustering and its cross-correlation with the shear signal (3 × 2pt analysis) for an accurate parameter estimation.
0

Euclid preparation

Alejandro Borlaff et al.Jan 1, 2022
+168
B
P
A
Context. While Euclid is an ESA mission specifically designed to investigate the nature of dark energy and dark matter, the planned unprecedented combination of survey area (∼15 000 deg 2 ), spatial resolution, low sky-background, and depth also make Euclid an excellent space observatory for the study of the low surface brightness Universe. Scientific exploitation of the extended low surface brightness structures requires dedicated calibration procedures that are yet to be tested. Aims. We investigate the capabilities of Euclid to detect extended low surface brightness structure by identifying and quantifying sky-background sources and stray-light contamination. We test the feasibility of generating sky flat-fields to reduce large-scale residual gradients in order to reveal the extended emission of galaxies observed in the Euclid survey. Methods. We simulated a realistic set of Euclid /VIS observations, taking into account both instrumental and astronomical sources of contamination, including cosmic rays, stray-light, zodiacal light, interstellar medium, and the cosmic infrared background, while simulating the effects of background sources in the field of view. Results. We demonstrate that a combination of calibration lamps, sky flats, and self-calibration would enable recovery of emission at a limiting surface brightness magnitude of μ lim = 29.5 −0.27 +0.08 mag arcsec −2 (3 σ , 10 × 10 arcsec 2 ) in the Wide Survey, and it would reach regions deeper by 2 mag in the Deep Surveys. Conclusions.Euclid /VIS has the potential to be an excellent low surface brightness observatory. Covering the gap between pixel-to-pixel calibration lamp flats and self-calibration observations for large scales, the application of sky flat-fielding will enhance the sensitivity of the VIS detector at scales larger than 1″, up to the size of the field of view, enabling Euclid to detect extended surface brightness structures below μ lim = 31 mag arcsec −2 and beyond.
0

Euclid: Constraining dark energy coupled to electromagnetism using astrophysical and laboratory data

Matteo Martinelli et al.Oct 1, 2021
+86
S
C
M
In physically realistic scalar-field based dynamical dark energy models (including, e.g., quintessence) one naturally expects the scalar field to couple to the rest of the model's degrees of freedom. In particular, a coupling to the electromagnetic sector leads to a time (redshift) dependence of the fine-structure constant and a violation of the Weak Equivalence Principle. Here we extend the previous Euclid forecast constraints on dark energy models to this enlarged (but physically more realistic) parameter space, and forecast how well Euclid, together with high-resolution spectroscopic data and local experiments, can constrain these models. Our analysis combines simulated Euclid data products with astrophysical measurements of the fine-structure constant, $\alpha$, and local experimental constraints, and includes both parametric and non-parametric methods. For the astrophysical measurements of $\alpha$ we consider both the currently available data and a simulated dataset representative of Extremely Large Telescope measurements and expected to be available in the 2030s. Our parametric analysis shows that in the latter case the inclusion of astrophysical and local data improves the Euclid dark energy figure of merit by between $8\%$ and $26\%$, depending on the correct fiducial model, with the improvements being larger in the null case where the fiducial coupling to the electromagnetic sector is vanishing. These improvements would be smaller with the current astrophysical data. Moreover, we illustrate how a genetic algorithms based reconstruction provides a null test for the presence of the coupling. Our results highlight the importance of complementing surveys like Euclid with external data products, in order to accurately test the wider parameter spaces of physically motivated paradigms.
0

Euclid: Impact of non-linear and baryonic feedback prescriptions on cosmological parameter estimation from weak lensing cosmic shear

Matteo Martinelli et al.May 1, 2021
+88
M
I
M
Upcoming surveys will map the growth of large-scale structure with unprecented precision, improving our understanding of the dark sector of the Universe. Unfortunately, much of the cosmological information is encoded by the small scales, where the clustering of dark matter and the effects of astrophysical feedback processes are not fully understood. This can bias the estimates of cosmological parameters, which we study here for a joint analysis of mock Euclid cosmic shear and Planck cosmic microwave background data. We use different implementations for the modelling of the signal on small scales and find that they result in significantly different predictions. Moreover, the different nonlinear corrections lead to biased parameter estimates, especially when the analysis is extended into the highly nonlinear regime, with both the Hubble constant, $H_0$, and the clustering amplitude, $σ_8$, affected the most. Improvements in the modelling of nonlinear scales will therefore be needed if we are to resolve the current tension with more and better data. For a given prescription for the nonlinear power spectrum, using different corrections for baryon physics does not significantly impact the precision of Euclid, but neglecting these correction does lead to large biases in the cosmological parameters. In order to extract precise and unbiased constraints on cosmological parameters from Euclid cosmic shear data, it is therefore essential to improve the accuracy of the recipes that account for nonlinear structure formation, as well as the modelling of the impact of astrophysical processes that redistribute the baryons.
0

Euclidpreparation

A. Pocino et al.Nov 1, 2021
+148
F
I
A
The accuracy of photometric redshifts (photo-zs) particularly affects the results of the analyses of galaxy clustering with photometrically-selected galaxies (GCph) and weak lensing. In the next decade, space missions like Euclid will collect photometric measurements for millions of galaxies. These data should be complemented with upcoming ground-based observations to derive precise and accurate photo-zs. In this paper, we explore how the tomographic redshift binning and depth of ground-based observations will affect the cosmological constraints expected from Euclid. We focus on GCph and extend the study to include galaxy-galaxy lensing (GGL). We add a layer of complexity to the analysis by simulating several realistic photo-z distributions based on the Euclid Consortium Flagship simulation and using a machine learning photo-z algorithm. We use the Fisher matrix formalism and these galaxy samples to study the cosmological constraining power as a function of redshift binning, survey depth, and photo-z accuracy. We find that bins with equal width in redshift provide a higher Figure of Merit (FoM) than equipopulated bins and that increasing the number of redshift bins from 10 to 13 improves the FoM by 35% and 15% for GCph and its combination with GGL, respectively. For GCph, an increase of the survey depth provides a higher FoM. But the addition of faint galaxies beyond the limit of the spectroscopic training data decreases the FoM due to the spurious photo-zs. When combining both probes, the number density of the sample, which is set by the survey depth, is the main factor driving the variations in the FoM. We conclude that there is more information that can be extracted beyond the nominal 10 tomographic redshift bins of Euclid and that we should be cautious when adding faint galaxies into our sample, since they can degrade the cosmological constraints.
0

Euclid: Forecast constraints on consistency tests of the ΛCDM model

Savvas Nesseris et al.Apr 1, 2022
+106
M
D
S
The standard cosmological model is based on the fundamental assumptions of a spatially homogeneous and isotropic universe on large scales. An observational detection of a violation of these assumptions at any redshift would immediately indicate the presence of new physics. We quantify the ability of the Euclid mission, together with contemporary surveys, to improve the current sensitivity of null tests of the canonical cosmological constant $\Lambda$ and the cold dark matter (LCDM) model in the redshift range $0
0

Euclid: Testing the Copernican principle with next-generation surveys

David Camarena et al.Mar 1, 2023
+102
Z
V
D
The Copernican principle, the notion that we are not at a special location in the Universe, is one of the cornerstones of modern cosmology and its violation would invalidate the Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) metric, causing a major change in our understanding of the Universe. Thus, it is of fundamental importance to perform observational tests of this principle. We determine the precision with which future surveys will be able to test the Copernican principle and their ability to detect any possible violations. We forecast constraints on the inhomogeneous Lema\^{\i}tre-Tolman-Bondi model with a cosmological constant $\Lambda$ ($\Lambda$LTB), basically a cosmological constant $\Lambda$ and cold dark matter ($\Lambda$CDM) model, but endowed with a spherical inhomogeneity. We consider combinations of currently available data and simulated Euclid data, together with external data products, based on both $\Lambda$CDM and $\Lambda$LTB fiducial models. These constraints are compared to the expectations from the Copernican principle. When considering the $\Lambda$CDM fiducial model, we find that Euclid data, in combination with other current and forthcoming surveys, will improve the constraints on the Copernican principle by about $30\%$, with $\pm10\%$ variations depending on the observables and scales considered. On the other hand, when considering a $\Lambda$LTB fiducial model, we find that future Euclid data, combined with other current and forthcoming data sets, will be able to detect Gpc-scale inhomogeneities of contrast $-0.1$. Next-generation surveys, such as Euclid, will thoroughly test homogeneity at large scales, tightening the constraints on possible violations of the Copernican principle.
0

Euclid: The search for primordial features

M. Ballardini et al.Mar 1, 2024
+117
F
Y
M
Primordial features, in particular oscillatory signals, imprinted in the primordial power spectrum of density perturbations represent a clear window of opportunity for detecting new physics at high-energy scales. Future spectroscopic and photometric measurements from the $Euclid$ space mission will provide unique constraints on the primordial power spectrum, thanks to the redshift coverage and high-accuracy measurement of nonlinear scales, thus allowing us to investigate deviations from the standard power-law primordial power spectrum. We consider two models with primordial undamped oscillations superimposed on the matter power spectrum, one linearly spaced in $k$-space the other logarithmically spaced in $k$-space. We forecast uncertainties applying a Fisher matrix method to spectroscopic galaxy clustering, weak lensing, photometric galaxy clustering, cross correlation between photometric probes, spectroscopic galaxy clustering bispectrum, CMB temperature and $E$-mode polarization, temperature-polarization cross correlation, and CMB weak lensing. We also study a nonlinear density reconstruction method to retrieve the oscillatory signals in the primordial power spectrum. We find the following percentage relative errors in the feature amplitude with $Euclid$ primary probes for the linear (logarithmic) feature model: 21% (22%) in the pessimistic settings and 18% (18%) in the optimistic settings at 68.3% confidence level (CL) using GC$_{\rm sp}$+WL+GC$_{\rm ph}$+XC. Combining all the sources of information explored expected from $Euclid$ in combination with future SO-like CMB experiment, we forecast ${\cal A}_{\rm lin} \simeq 0.010 \pm 0.001$ at 68.3% CL and ${\cal A}_{\rm log} \simeq 0.010 \pm 0.001$ for GC$_{\rm sp}$(PS rec + BS)+WL+GC$_{\rm ph}$+XC+SO-like both for the optimistic and pessimistic settings over the frequency range $(1,\,10^{2.1})$.
0

Euclid preparation. The Near-IR Background Dipole Experiment with Euclid

Euclid Collaboration et al.Jan 31, 2024
+202
R
A
E
Verifying the fully kinematic nature of the cosmic microwave background (CMB) dipole is of fundamental importance in cosmology. In the standard cosmological model with the Friedman-Lemaitre-Robertson-Walker (FLRW) metric from the inflationary expansion the CMB dipole should be entirely kinematic. Any non-kinematic CMB dipole component would thus reflect the preinflationary structure of spacetime probing the extent of the FLRW applicability. Cosmic backgrounds from galaxies after the matter-radiation decoupling, should have kinematic dipole component identical in velocity with the CMB kinematic dipole. Comparing the two can lead to isolating the CMB non-kinematic dipole. It was recently proposed that such measurement can be done using the near-IR cosmic infrared background (CIB) measured with the currently operating Euclid telescope, and later with Roman. The proposed method reconstructs the resolved CIB, the Integrated Galaxy Light (IGL), from Euclid's Wide Survey and probes its dipole, with a kinematic component amplified over that of the CMB by the Compton-Getting effect. The amplification coupled with the extensive galaxy samples forming the IGL would determine the CIB dipole with an overwhelming signal/noise, isolating its direction to sub-degree accuracy. We develop details of the method for Euclid's Wide Survey in 4 bands spanning 0.6 to 2 mic. We isolate the systematic and other uncertainties and present methodologies to minimize them, after confining the sample to the magnitude range with negligible IGL/CIB dipole from galaxy clustering. These include the required star-galaxy separation, accounting for the extinction correction dipole using the method newly developed here achieving total separation, accounting for the Earth's orbital motion and other systematic effects. (Abridged)
0
Citation1
0
Save
0

Euclid. III. The NISP instrument

K. Jahnkę et al.Jul 31, 2024
+166
M
W
K
The Near-Infrared Spectrometer and Photometer (NISP) on board the satellite provides multiband photometry and $R slitless grism spectroscopy in the 950--2020\,nm wavelength range. In this reference article, we illuminate the background of NISP's functional and calibration requirements, describe the instrument's integral components, and provide all its key properties. We also sketch the processes needed to understand how NISP operates and is calibrated as well as its technical potentials and limitations. Links to articles providing more details and the technical background are included. The NISP's 16 H2RG detectors with a plate scale of $ deliver a field of view of 0.57\,deg$^2$. In photometric mode, NISP reaches a limiting magnitude of sim \,24.5\,AB\,mag in three photometric exposures of about 100\,s in exposure time for point sources and with a S/N of five. For spectroscopy, NISP's point-source sensitivity is a SNR = 3.5 detection of an emission line with flux sim \,$2 $ integrated over two resolution elements of 13.4\ in 3times 560\,s grism exposures at 1.6\ (redshifted Halpha ). Our calibration includes on-ground and in-flight characterisation and monitoring of the pixel-based detector baseline, dark current, non-linearity, and sensitivity to guarantee a relative photometric accuracy better than 1.5<!PCT!> and a relative spectrophotometry better than 0.7<!PCT!>. The wavelength calibration must be accurate to 5\ or better. The NISP is the state-of-the-art instrument in the near-infrared for all science beyond small areas available from HST and JWST -- and it represents an enormous advance from any existing instrumentation due to its combination of field size and high throughput of telescope and instrument. During six-year survey covering 14\,000\,deg$^2$ of extragalactic sky, NISP will be the backbone in determining distances of more than a billion galaxies. Its near-infrared data will become a rich reference imaging and spectroscopy data set for the coming decades.
0
Paper
Citation1
0
Save
Load More