AD
A. Dı́az-Sánchez
Author with expertise in Astronomical Instrumentation and Spectroscopy
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
1
h-index:
0
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Euclid preparation. The Near-IR Background Dipole Experiment with Euclid

Euclid Collaboration et al.Jan 31, 2024
+202
R
A
E
Verifying the fully kinematic nature of the cosmic microwave background (CMB) dipole is of fundamental importance in cosmology. In the standard cosmological model with the Friedman-Lemaitre-Robertson-Walker (FLRW) metric from the inflationary expansion the CMB dipole should be entirely kinematic. Any non-kinematic CMB dipole component would thus reflect the preinflationary structure of spacetime probing the extent of the FLRW applicability. Cosmic backgrounds from galaxies after the matter-radiation decoupling, should have kinematic dipole component identical in velocity with the CMB kinematic dipole. Comparing the two can lead to isolating the CMB non-kinematic dipole. It was recently proposed that such measurement can be done using the near-IR cosmic infrared background (CIB) measured with the currently operating Euclid telescope, and later with Roman. The proposed method reconstructs the resolved CIB, the Integrated Galaxy Light (IGL), from Euclid's Wide Survey and probes its dipole, with a kinematic component amplified over that of the CMB by the Compton-Getting effect. The amplification coupled with the extensive galaxy samples forming the IGL would determine the CIB dipole with an overwhelming signal/noise, isolating its direction to sub-degree accuracy. We develop details of the method for Euclid's Wide Survey in 4 bands spanning 0.6 to 2 mic. We isolate the systematic and other uncertainties and present methodologies to minimize them, after confining the sample to the magnitude range with negligible IGL/CIB dipole from galaxy clustering. These include the required star-galaxy separation, accounting for the extinction correction dipole using the method newly developed here achieving total separation, accounting for the Earth's orbital motion and other systematic effects. (Abridged)
0
Citation1
0
Save
0

Euclid preparation. XXXVII. Galaxy colour selections with Euclid and ground photometry for cluster weak-lensing analyses

G. Lesci et al.Apr 1, 2024
+220
M
M
G
Aims. We derived galaxy colour selections from Euclid and ground-based photometry, aiming to accurately define background galaxy samples in cluster weak-lensing analyses. These selections have been implemented in the Euclid data analysis pipelines for galaxy clusters. Methods. Given any set of photometric bands, we developed a method for the calibration of optimal galaxy colour selections that maximises the selection completeness, given a threshold on purity. Such colour selections are expressed as a function of the lens redshift. Results. We calibrated galaxy selections using simulated ground-based griz and EuclidY E J E H E photometry. Both selections produce a purity higher than 97%. The griz selection completeness ranges from 30% to 84% in the lens redshift range z l ∈ [0.2, 0.8]. With the full grizY E J E H E selection, the completeness improves by up to 25 percentage points, and the z l range extends up to z l = 1.5. The calibrated colour selections are stable to changes in the sample limiting magnitudes and redshift, and the selection based on griz bands provides excellent results on real external datasets. Furthermore, the calibrated selections provide stable results using alternative photometric aperture definitions obtained from different ground-based telescopes. The griz selection is also purer at high redshift and more complete at low redshift compared to colour selections found in the literature. We find excellent agreement in terms of purity and completeness between the analysis of an independent, simulated Euclid galaxy catalogue and our calibration sample, except for galaxies at high redshifts, for which we obtain up to 50 percentage points higher completeness. The combination of colour and photo- z selections applied to simulated Euclid data yields up to 95% completeness, while the purity decreases down to 92% at high z l . We show that the calibrated colour selections provide robust results even when observations from a single band are missing from the ground-based data. Finally, we show that colour selections do not disrupt the shear calibration for stage III surveys. The first Euclid data releases will provide further insights into the impact of background selections on the shear calibration.
0

Euclid preparation. XLI. Galaxy power spectrum modelling in real space

A. Pezzotta et al.Jul 1, 2024
+236
M
C
A
We investigate the accuracy of the perturbative galaxy bias expansion in view of the forthcoming analysis of the Euclid spectroscopic galaxy samples. We compare the performance of a Eulerian galaxy bias expansion using state-of-the-art prescriptions from the effective field theory of large-scale structure (EFTofLSS) with a hybrid approach based on Lagrangian perturbation theory and high-resolution simulations. These models are benchmarked against comoving snapshots of the flagship I N -body simulation at z = (0.9, 1.2, 1.5, 1.8), which have been populated with H α galaxies leading to catalogues of millions of objects within a volume of about 58 h −3 Gpc 3 . Our analysis suggests that both models can be used to provide a robust inference of the parameters ( h , ω c ) in the redshift range under consideration, with comparable constraining power. We additionally determine the range of validity of the EFTofLSS model in terms of scale cuts and model degrees of freedom. From these tests, it emerges that the standard third-order Eulerian bias expansion – which includes local and non-local bias parameters, a matter counter term, and a correction to the shot-noise contribution – can accurately describe the full shape of the real-space galaxy power spectrum up to the maximum wavenumber of k max = 0.45 h Mpc −1 , and with a measurement precision of well below the percentage level. Fixing either of the tidal bias parameters to physically motivated relations still leads to unbiased cosmological constraints, and helps in reducing the severity of projection effects due to the large dimensionality of the model. We finally show how we repeated our analysis assuming a volume that matches the expected footprint of Euclid , but without considering observational effects, such as purity and completeness, showing that we can get constraints on the combination ( h , ω c ) that are consistent with the fiducial values to better than the 68% confidence interval over this range of scales and redshifts.
0

Euclid preparation. LensMC, weak lensing cosmic shear measurement with forward modelling and Markov Chain Monte Carlo sampling

Euclid Collaboration et al.May 1, 2024
+223
L
G
E
LensMC is a weak lensing shear measurement method developed for Euclid and Stage-IV surveys. It is based on forward modelling to deal with convolution by a point spread function with comparable size to many galaxies; sampling the posterior distribution of galaxy parameters via Markov Chain Monte Carlo; and marginalisation over nuisance parameters for each of the 1.5 billion galaxies observed by Euclid. The scientific performance is quantified through high-fidelity images based on the Euclid Flagship simulations and emulation of the Euclid VIS images; realistic clustering with a mean surface number density of 250 arcmin$^{-2}$ ($I_{\rm E}<29.5$) for galaxies, and 6 arcmin$^{-2}$ ($I_{\rm E}<26$) for stars; and a diffraction-limited chromatic point spread function with a full width at half maximum of $0.^{\!\prime\prime}2$ and spatial variation across the field of view. Objects are measured with a density of 90 arcmin$^{-2}$ ($I_{\rm E}<26.5$) in 4500 deg$^2$. The total shear bias is broken down into measurement (our main focus here) and selection effects (which will be addressed elsewhere). We find: measurement multiplicative and additive biases of $m_1=(-3.6\pm0.2)\times10^{-3}$, $m_2=(-4.3\pm0.2)\times10^{-3}$, $c_1=(-1.78\pm0.03)\times10^{-4}$, $c_2=(0.09\pm0.03)\times10^{-4}$; a large detection bias with a multiplicative component of $1.2\times10^{-2}$ and an additive component of $-3\times10^{-4}$; and a measurement PSF leakage of $\alpha_1=(-9\pm3)\times10^{-4}$ and $\alpha_2=(2\pm3)\times10^{-4}$. When model bias is suppressed, the obtained measurement biases are close to Euclid requirement and largely dominated by undetected faint galaxies ($-5\times10^{-3}$). Although significant, model bias will be straightforward to calibrate given the weak sensitivity.
0

Euclid preparation

Tiago Castro et al.May 1, 2024
+208
M
S
T
The Euclid photometric survey of galaxy clusters stands as a powerful cosmological tool, with the capacity to significantly propel our understanding of the Universe. Despite being subdominant to dark matter and dark energy, the baryonic component of our Universe holds substantial influence over the structure and mass of galaxy clusters. This paper presents a novel model that can be used to precisely quantify the impact of baryons on the virial halo masses of galaxy clusters using the baryon fraction within a cluster as a proxy for their effect. Constructed on the premise of quasi-adiabaticity, the model includes two parameters, which are calibrated using non-radiative cosmological hydrodynamical simulations, and a single large-scale simulation from the Magneticum set, which includes the physical processes driving galaxy formation. As a main result of our analysis, we demonstrate that this model delivers a remarkable 1% relative accuracy in determining the virial dark matter-only equivalent mass of galaxy clusters starting from the corresponding total cluster mass and baryon fraction measured in hydrodynamical simulations. Furthermore, we demonstrate that this result is robust against changes in cosmological parameters and against variation of the numerical implementation of the subresolution physical processes included in the simulations. Our work substantiates previous claims regarding the impact of baryons on cluster cosmology studies. In particular, we show how neglecting these effects would lead to biased cosmological constraints for a Euclid -like cluster abundance analysis. Importantly, we demonstrate that uncertainties associated with our model arising from baryonic corrections to cluster masses are subdominant when compared to the precision with which mass–observable (i.e. richness) relations will be calibrated using Euclid and to our current understanding of the baryon fraction within galaxy clusters.
0

Euclid. II. The VIS Instrument

M. Cropper et al.May 22, 2024
+401
J
A
M
This paper presents the specification, design, and development of the Visible Camera (VIS) on the ESA Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg^2 sampled at 0.1" with an array of 609 Megapixels and spatial resolution of 0.18". It will be used to survey approximately 14,000 deg^2 of extragalactic sky to measure the distortion of galaxies in the redshift range z=0.1-1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes of Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and, from how this has changed with look-back time, the nature of dark energy and theories of gravity can be constrained. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, reaching m_AB>24.5 with S/N >10 in a single broad I_E~(r+i+z) band over a six year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the VIS concept and describes the instrument design and development before reporting the pre-launch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than m_AB=25 with S/N>10 for galaxies of full-width half-maximum of 0.3" in a 1.3" diameter aperture over the Wide Survey, and m_AB>26.4 for a Deep Survey that will cover more than 50 deg^2. The paper also describes how VIS works with the other Euclid components of survey, telescope, and science data processing to extract the cosmological information.
0

Euclid. IV. The NISP Calibration Unit

S. Ferriol et al.Jul 25, 2024
+313
R
B
S
The near-infrared calibration unit (NI-CU) on board NISP is the first astronomical calibration lamp based on LED to be operated in space. is a mission in ESA's Cosmic Vision 2015--2025 framework to explore the dark universe and provide a next-level characterisation of the nature of gravitation, dark matter, and dark energy. Calibrating photometric and spectrometric measurements of galaxies to better than 1.5<!PCT!> accuracy in a survey homogeneously mapping sim \,14\,000\,deg$^2$ of extragalactic sky requires a very detailed characterisation of NIR detector properties as well as constant monitoring of them in flight. To cover two of the main contributions -- relative pixel-to-pixel sensitivity and non-linearity characteristics -- and to support other calibration activities, NI-CU was designed to provide spatially approximately homogeneous ($<$\,12<!PCT!> variations) and temporally stable illumination (0.1<!PCT!>--0.2<!PCT!> over 1200\,s) over the NISP detector plane with minimal power consumption and energy dissipation. NI-CU covers the spectral range sim \,nm -- at cryo-operating temperature -- at five fixed independent wavelengths to capture wavelength-dependent behaviour of the detectors, with fluence over a dynamic range of gtrsim \,100 from sim $. For this functionality, NI-CU is based on LED . We describe the rationale behind the decision and design process, the challenges in sourcing the right LED and the qualification process and lessons learned. We also provide a description of the completed NI-CU, its capabilities, and performance as well as its limits. NI-CU has been integrated into NISP and the satellite, and since launch in July 2023, it has started supporting survey operations.