P. Šimon
Author with expertise in Astronomical Instrumentation and Spectroscopy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(88% Open Access)
Cited by:
3,011
h-index:
50
/
i10-index:
210
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing

H. Hildebrandt et al.Oct 31, 2016
We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ∼450 deg2 of imaging data from the Kilo Degree Survey (KiDS). For a flat Λ cold dark matter (ΛCDM) cosmology with a prior on H0 that encompasses the most recent direct measurements, we find |$S_8\equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3}=0.745\pm 0.039$|⁠. This result is in good agreement with other low-redshift probes of large-scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A 2.3σ tension in S8 and ‘substantial discordance’ in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved ‘self-calibrating’ version of lensfit validated using an extensive suite of image simulations. Four-band ugri photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov chains are available at http://kids.strw.leidenuniv.nl.
0

CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products

T. Erben et al.Jun 19, 2013
We present data products from the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS). CFHTLenS is based on the Wide component of the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS). It encompasses 154 deg2 of deep, optical, high-quality, sub-arcsecond imaging data in the five optical filters u*g′r′i′z′. The scientific aims of the CFHTLenS team are weak gravitational lensing studies supported by photometric redshift estimates for the galaxies. This paper presents our data processing of the complete CFHTLenS data set. We were able to obtain a data set with very good image quality and high-quality astrometric and photometric calibration. Our external astrometric accuracy is between 60 and 70 mas with respect to Sloan Digital Sky Survey (SDSS) data, and the internal alignment in all filters is around 30 mas. Our average photometric calibration shows a dispersion of the order of 0.01–0.03 mag for g′r′i′z′ and about 0.04 mag for u* with respect to SDSS sources down to iSDSS ≤ 21. We demonstrate in accompanying papers that our data meet necessary requirements to fully exploit the survey for weak gravitational lensing analyses in connection with photometric redshift studies. In the spirit of the CFHTLS, all our data products are released to the astronomical community via the Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/CFHTLens/query.html. We give a description and how-to manuals of the public products which include image pixel data, source catalogues with photometric redshift estimates and all relevant quantities to perform weak lensing studies.
0

Gravitational lensing analysis of the Kilo-Degree Survey

Konrad Kuijken et al.Oct 20, 2015
The Kilo-Degree Survey (KiDS) is a multi-band imaging survey designed for cosmological studies from weak lensing and photometric redshifts. It uses the ESO VLT Survey Telescope with its wide-field camera OmegaCAM. KiDS images are taken in four filters similar to the SDSS ugri bands. The best-seeing time is reserved for deep r-band observations that reach a median 5-sigma limiting AB magnitude of 24.9 with a median seeing that is better than 0.7arcsec. Initial KiDS observations have concentrated on the GAMA regions near the celestial equator, where extensive, highly complete redshift catalogues are available. A total of 109 survey tiles, one square degree each, form the basis of the first set of lensing analyses, which focus on measurements of halo properties of GAMA galaxies. 9 galaxies per square arcminute enter the lensing analysis, for an effective inverse shear variance of 69 per square arcminute. Accounting for the shape measurement weight, the median redshift of the sources is 0.53. KiDS data processing follows two parallel tracks, one optimized for galaxy shape measurement (for weak lensing), and one for accurate matched-aperture photometry in four bands (for photometric redshifts). This technical paper describes how the lensing and photometric redshift catalogues have been produced (including an extensive description of the Gaussian Aperture and Photometry pipeline), summarizes the data quality, and presents extensive tests for systematic errors that might affect the lensing analyses. We also provide first demonstrations of the suitability of the data for cosmological measurements, and explain how the shear catalogues were blinded to prevent confirmation bias in the scientific analyses. The KiDS shear and photometric redshift catalogues, presented in this paper, are released to the community through http://kids.strw.leidenuniv.nl .
0

Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS

T. Schrabback et al.Apr 9, 2010
We present a comprehensive analysis of weak gravitational lensing by large-scale structure in the Hubble Space Telescope Cosmic Evolution Survey (COSMOS), in which we combine space-based galaxy shape measurements with ground-based photometric redshifts to study the redshift dependence of the lensing signal and constrain cosmological parameters. After applying our weak lensing-optimized data reduction, principal-component interpolation for the spatially, and temporally varying ACS point-spread function, and improved modelling of charge-transfer inefficiency, we measured a lensing signal that is consistent with pure gravitational modes and no significant shape systematics. We carefully estimated the statistical uncertainty from simulated COSMOS-like fields obtained from ray-tracing through the Millennium Simulation, including the full non-Gaussian sampling variance. We tested our lensing pipeline on simulated space-based data, recalibrated non-linear power spectrum corrections using the ray-tracing analysis, employed photometric redshift information to reduce potential contamination by intrinsic galaxy alignments, and marginalized over systematic uncertainties. We find that the weak lensing signal scales with redshift as expected from general relativity for a concordance ΛCDM cosmology, including the full cross-correlations between different redshift bins. Assuming a flat ΛCDM cosmology, we measure (/0.3 = 0.75±0.08 from lensing, in perfect agreement with WMAP-5, yielding joint constraints = , = (all 68.3% conf.). Dropping the assumption of flatness and using priors from the HST Key Project and Big-Bang nucleosynthesis only, we find a negative deceleration parameter q0 at 94.3% confidence from the tomographic lensing analysis, providing independent evidence of the accelerated expansion of the Universe. For a flat wCDM cosmology and prior w  [-2,0], we obtain w <-0.41 (90% conf.). Our dark energy constraints are still relatively weak solely due to the limited area of COSMOS. However, they provide an important demonstration of the usefulness of tomographic weak lensing measurements from space.
0

Euclid: Early Release Observations -- Overview of the Perseus cluster and analysis of its luminosity and stellar mass functions

Jean‐Charles Cuillandre et al.May 22, 2024
The Euclid ERO programme targeted the Perseus cluster of galaxies, gathering deep data in the central region of the cluster over 0.7 square degree, corresponding to approximately 0.25 r_200. The data set reaches a point-source depth of IE=28.0 (YE, JE, HE = 25.3) AB magnitudes at 5 sigma with a 0.16" and 0.48" FWHM, and a surface brightness limit of 30.1 (29.2) mag per square arcsec. The exceptional depth and spatial resolution of this wide-field multi-band data enable the simultaneous detection and characterisation of both bright and low surface brightness galaxies, along with their globular cluster systems, from the optical to the NIR. This study advances beyond previous analyses of the cluster and enables a range of scientific investigations summarised here. We derive the luminosity and stellar mass functions (LF and SMF) of the Perseus cluster in the Euclid IE band, thanks to supplementary u,g,r,i,z and Halpha data from the CFHT. We adopt a catalogue of 1100 dwarf galaxies, detailed in the corresponding ERO paper. We identify all other sources in the Euclid images and obtain accurate photometric measurements using AutoProf or AstroPhot for 138 bright cluster galaxies, and SourceExtractor for half a million compact sources. Cluster membership for the bright sample is determined by calculating photometric redshifts with Phosphoros. Our LF and SMF are the deepest recorded for the Perseus cluster, highlighting the groundbreaking capabilities of the Euclid telescope. Both the LF and SMF fit a Schechter plus Gaussian model. The LF features a dip at M(IE)=-19 and a faint-end slope of alpha_S = -1.2 to -1.3. The SMF displays a low-mass-end slope of alpha_S = -1.2 to -1.35. These observed slopes are flatter than those predicted for dark matter halos in cosmological simulations, offering significant insights for models of galaxy formation and evolution.
0

Euclid. IV. The NISP Calibration Unit

F. Hormuth et al.Jul 25, 2024
The near-infrared calibration unit (NI-CU) on board NISP is the first astronomical calibration lamp based on LED to be operated in space. is a mission in ESA's Cosmic Vision 2015--2025 framework to explore the dark universe and provide a next-level characterisation of the nature of gravitation, dark matter, and dark energy. Calibrating photometric and spectrometric measurements of galaxies to better than 1.5<!PCT!> accuracy in a survey homogeneously mapping sim \,14\,000\,deg$^2$ of extragalactic sky requires a very detailed characterisation of NIR detector properties as well as constant monitoring of them in flight. To cover two of the main contributions -- relative pixel-to-pixel sensitivity and non-linearity characteristics -- and to support other calibration activities, NI-CU was designed to provide spatially approximately homogeneous ($<$\,12<!PCT!> variations) and temporally stable illumination (0.1<!PCT!>--0.2<!PCT!> over 1200\,s) over the NISP detector plane with minimal power consumption and energy dissipation. NI-CU covers the spectral range sim \,nm -- at cryo-operating temperature -- at five fixed independent wavelengths to capture wavelength-dependent behaviour of the detectors, with fluence over a dynamic range of gtrsim \,100 from sim $. For this functionality, NI-CU is based on LED . We describe the rationale behind the decision and design process, the challenges in sourcing the right LED and the qualification process and lessons learned. We also provide a description of the completed NI-CU, its capabilities, and performance as well as its limits. NI-CU has been integrated into NISP and the satellite, and since launch in July 2023, it has started supporting survey operations.
Load More