JL
Julien Lesgourgues
Author with expertise in Particle Dark Matter and Detection Methods
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
1,689
h-index:
56
/
i10-index:
93
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Review of Particle Physics

S. Navas et al.Aug 1, 2024
The summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,717 new measurements from 869 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Most of the 120 reviews are updated, including many that are heavily revised. The is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete (both volumes) is published online on the website of the Particle Data Group () and in a journal. Volume 1 is available in print as the . A with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app. The 2024 edition of the Review of Particle Physics should be cited as: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024) © 2024 2024
0

A fresh look at linear cosmological constraints on a decaying Dark Matter component

Vivian Poulin et al.Aug 17, 2016
We consider a cosmological model in which a fraction fdcdm of the Dark Matter (DM) is allowed to decay in an invisible relativistic component, and compute the resulting constraints on both the decay width (or inverse lifetime) Γdcdm and fdcdm from purely gravitational arguments. We report a full derivation of the Boltzmann hierarchy, correcting a mistake in previous literature, and compute the impact of the decay—as a function of the lifetime—on the CMB and matter power spectra. From CMB only, we obtain that no more than 3.8% of the DM could have decayed in the time between recombination and today (all bounds quoted at 95% CL). We also comment on the important application of this bound to the case where primordial black holes constitute DM, a scenario notoriously difficult to constrain. For lifetimes longer than the age of the Universe, the bounds can be cast as fdcdmΓdcdm < 6.3×10−3 Gyr−1. For the first time, we also checked that degeneracies with massive neutrinos are broken when information from the large scale structure is used. Even secondary effects like CMB lensing suffice to this purpose. Decaying DM models have been invoked to solve a possible tension between low redshift astronomical measurements of σ8 and Ωm and the ones inferred by Planck. We reassess this claim finding that with the most recent BAO, HST and σ8 data extracted from the CFHT survey, the tension is only slightly reduced despite the two additional free parameters. Nonetheless, the existing tension explains why the bound on fdcdmΓdcdm loosens to fdcdmΓdcdm < 15.9×10−3 Gyr−1 when including such additional data. The bound however improves to fdcdmΓdcdm < 5.9 ×10−3 Gyr−1 if only data consistent with the CMB are included. This highlights the importance of establishing whether the tension is due to real physical effects or unaccounted systematics, for settling the reach of achievable constraints on decaying DM.
0

The BAO+BBN take on the Hubble tension

Nils Schöneberg et al.Oct 1, 2019
Many attempts to solve the Hubble tension with extended cosmological models combine an enhanced relic radiation density, acting at the level of background cosmology, with new physical ingredients affecting the evolution of cosmological perturbations. Several authors have pointed out the ability of combined Baryon Acoustic Oscillation (BAO) and Big Bang Nucleosynthesis (BBN) data to probe the background cosmological history independently of both CMB maps and supernovae data. Using state-of-the-art assumptions on BBN, we confirm that combined BAO, deuterium, and helium data are in tension with the SH0ES measurements under the $\Lambda$CDM assumption at the 3.2$\sigma$ level, while being in close agreement with the CMB value. We subsequently show that floating the radiation density parameter $N_\mathrm{eff}$ only reduces the tension down to the 2.6$\sigma$ level. This conclusion, totally independent of any CMB data, shows that a high $N_\mathrm{eff}$ accounting for extra relics (either free-streaming or self-interacting) does not provide an obvious solution to the crisis, not even at the level of background cosmology. To circumvent this strong bound, (i) the extra radiation has to be generated after BBN to avoid helium bounds, and (ii) additional ingredients have to be invoked at the level of perturbations to reconcile this extra radiation with CMB and LSS data.
0

Spectral distortions from acoustic dissipation with non-Gaussian (or not) perturbations

Devanshu Sharma et al.Jul 1, 2024
Abstract A well-known route to form primordial black holes in the early universe relies on the existence of unusually large primordial curvature fluctuations, confined to a narrow range of wavelengths that would be too small to be constrained by Cosmic Microwave Background (CMB) anisotropies. This scenario would however boost the generation of μ -type spectral distortions in the CMB due to an enhanced dissipation of acoustic waves. Previous studies of μ -distortion bounds on the primordial spectrum were based on the assumptions of Gaussian primordial fluctuations. In this work, we push the calculation of μ -distortions to one higher order in photon anisotropies. We discuss how to derive bounds on primordial spectrum peaks obeying non-Gaussian statistics under the assumption of local (perturbative or not) non-Gaussianity. We find that, depending on the value of the peak scale, the bounds may either remain stable or get tighter by several orders of magnitude, but only when the departure from Gaussian statistics is very strong. Our results are translated in terms of bounds on primordial supermassive black hole mass in a companion paper.