OL
O. Lahav
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(100% Open Access)
Cited by:
32,465
h-index:
101
/
i10-index:
391
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Review of Particle Physics

R.L. Workman et al.Aug 1, 2022
Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app.
0

The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications

Shaun Cole et al.Aug 26, 2005
We present a power-spectrum analysis of the final 2dF Galaxy Redshift Survey (2dFGRS), employing a direct Fourier method. The sample used comprises 221 414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection, improving on previous treatments in a number of respects. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered. We discuss in detail the possible differences between the galaxy and mass power spectra, and treat these using simulations, analytic models and a hybrid empirical approach. Based on these investigations, we are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the ‘baryon oscillations’ that are predicted in cold dark matter (CDM) models. Fitting to a CDM model, assuming a primordial ns= 1 spectrum, h= 0.72 and negligible neutrino mass, the preferred parameters are Ωmh= 0.168 ± 0.016 and a baryon fraction Ωb/Ωm= 0.185 ± 0.046 (1σ errors). The value of Ωmh is 1σ lower than the 0.20 ± 0.03 in our 2001 analysis of the partially complete 2dFGRS. This shift is largely due to the signal from the newly sampled regions of space, rather than the refinements in the treatment of observational selection. This analysis therefore implies a density significantly below the standard Ωm= 0.3: in combination with cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe (WMAP), we infer Ωm= 0.231 ± 0.021.
0

The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions

Shaun Cole et al.Sep 1, 2001
We combine the Two Micron All Sky Survey (2MASS) Extended Source Catalogue and the 2dF Galaxy Redshift Survey to produce an infrared selected galaxy catalogue with 17 173 measured redshifts. We use this extensive data set to estimate the galaxy luminosity functions in the J- and KS-bands. The luminosity functions are fairly well fitted by Schechter functions with parameters MJ*−5 log h = −22.36±0.02, αJ = −0.93±0.04, ΦJ* = 0.0104±0.0016 h3 Mpc−3 in the J-band and MKS*−5 log h = −23.44±0.03, αKS = −0.96±0.05, ΦKS* = 0.0108±0.0016 h3 Mpc−3 in the KS-band (2MASS Kron magnitudes). These parameters are derived assuming a cosmological model with Ω0 = 0.3 and Λ0 = 0.7. With data sets of this size, systematic rather than random errors are the dominant source of uncertainty in the determination of the luminosity function. We carry out a careful investigation of possible systematic effects in our data. The surface brightness distribution of the sample shows no evidence that significant numbers of low surface brightness or compact galaxies are missed by the survey. We estimate the present-day distributions of bJ — KS and J — KS colours as a function of the absolute magnitude and use models of the galaxy stellar populations, constrained by the observed optical and infrared colours, to infer the galaxy stellar mass function. Integrated over all galaxy masses, this yields a total mass fraction in stars (in units of the critical mass density) of Ωstarsh = (1.6±0.24) × 10−3 for a Kennicutt initial mass function (IMF) and Ωstarsh = (2.9±0.43) × 10−3 for a Salpeter IMF. These values are consistent with those inferred from observational estimates of the total star formation history of the Universe provided that dust extinction corrections are modest.
0

THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW

Marc Postman et al.Mar 14, 2012
The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of structure formation models. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, 20 CLASH clusters are solely X-ray selected. The X-ray-selected clusters are massive (kT > 5 keV) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (θEin > 35'' at zs = 2) to optimize the likelihood of finding highly magnified high-z (z > 7) galaxies. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (σz ∼ 0.02(1 + z)) photometric redshifts for newly discovered arcs. Observations of each cluster are spread over eight epochs to enable a search for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of supernovae. We present newly re-derived X-ray luminosities, temperatures, and Fe abundances for the CLASH clusters as well as a representative source list for MACS1149.6+2223 (z = 0.544).
0

Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing

T. Abbott et al.Jan 13, 2022
We present the first cosmology results from large-scale structure using the full 5000 deg2 of imaging data from the Dark Energy Survey (DES) Data Release 1. We perform an analysis of large-scale structure combining three two-point correlation functions (3×2pt): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions, galaxy–galaxy lensing. To achieve the cosmological precision enabled by these measurements has required updates to nearly every part of the analysis from DES Year 1, including the use of two independent galaxy clustering samples, modeling advances, and several novel improvements in the calibration of gravitational shear and photometric redshift inference. The analysis was performed under strict conditions to mitigate confirmation or observer bias; we describe specific changes made to the lens galaxy sample following unblinding of the results and tests of the robustness of our results to this decision. We model the data within the flat ΛCDM and wCDM cosmological models, marginalizing over 25 nuisance parameters. We find consistent cosmological results between the three two-point correlation functions; their combination yields clustering amplitude S8=0.776+0.017−0.017 and matter density Ωm=0.339+0.032−0.031 in ΛCDM, mean with 68% confidence limits; S8=0.775+0.026−0.024, Ωm=0.352+0.035−0.041, and dark energy equation-of-state parameter w=−0.98+0.32−0.20 in wCDM. These constraints correspond to an improvement in signal-to-noise of the DES Year 3 3×2pt data relative to DES Year 1 by a factor of 2.1, about 20% more than expected from the increase in observing area alone. This combination of DES data is consistent with the prediction of the model favored by the Planck 2018 cosmic microwave background (CMB) primary anisotropy data, which is quantified with a probability-to-exceed p=0.13–0.48. We find better agreement between DES 3×2pt and Planck than in DES Y1, despite the significantly improved precision of both. When combining DES 3×2pt data with available baryon acoustic oscillation, redshift-space distortion, and type Ia supernovae data, we find p=0.34. Combining all of these datasets with Planck CMB lensing yields joint parameter constraints of S8=0.812+0.008−0.008, Ωm=0.306+0.004−0.005, h=0.680+0.004−0.003, and ∑mν<0.13 eV (95% C.L.) in ΛCDM; S8=0.812+0.008−0.008, Ωm=0.302+0.006−0.006, h=0.687+0.006−0.007, and w=−1.031+0.030−0.027 in wCDM.21 MoreReceived 1 June 2021Accepted 22 October 2021DOI:https://doi.org/10.1103/PhysRevD.105.023520© 2022 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasCosmological parametersCosmologyDark energyDark matterPhysical SystemsLarge scale structure of the UniverseGravitation, Cosmology & Astrophysics
0

Dynamical effects of the cosmological constant

O. Lahav et al.Jul 1, 1991
The possibility of measuring the density parameter Ω0 and the cosmological constant |$\lambda_0 \equiv\Lambda/(3H^{2}_{0})$| using dynamical tests is explored in linear and non-linear theory. In linear theory we find that the rate of growth of the perturbations at the present epoch is approximated by |$f(z = 0) \approx \Omega^{0.6}_{0}+ \frac1{70} \lambda_0(1+ \frac1{2} \Omega_0)$|⁠. Therefore, dynamical tests such as infall around clusters and dipoles at the present epoch do not distinguish well between universes with and without a cosmological constant. At higher redshifts, the perturbations also depend mainly on the matter density at a particular epoch, |$f(z) \approx \Omega^{0.6}(z)$|⁠, which has a strong dependence on λ0 at |$z \approx 0.5-2.0$|⁠. Therefore, information on both parameters can be obtained by looking at clustering at different redshifts. In practice, however, the other observables also depend on the cosmology, and in some cases conspire to give a weak dependence on λ0. By using the non-linear spherical infall model for a family of Cold Dark Matter (CDM) power-spectra we also find that dynamics at z = 0 does not tell much about λ0. At higher redshifts there is unfortunately another conspiracy between conventional observables, which hides information about λ0. The final radius of a virialized cluster (relative to the turn-around radius) is approximated by |$R_\text{f}/R_\text{ta} \approx (1-\eta/2)/(2-\eta/2)$|⁠, where η is the ratio of Λ to the density at turn-around. Therefore a repulsive Λ gives a smaller final radius than a vanishing Λ.
Load More