MT
M. Trifoglio
Author with expertise in Radiometric Calibration and Performance Monitoring
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
2,703
h-index:
43
/
i10-index:
104
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The European Photon Imaging Camera on XMM-Newton: The MOS cameras

M. Turner et al.Jan 1, 2001
The EPIC focal plane imaging spectrometers on XMM-Newton use CCDs to record the images and spectra of celestial X-ray sources focused by the three X-ray mirrors. There is one camera at the focus of each mirror; two of the cameras contain seven MOS CCDs, while the third uses twelve PN CCDs, defining a circular field of view of 30′ diameter in each case. The CCDs were specially developed for EPIC, and combine high quality imaging with spectral resolution close to the Fano limit. A filter wheel carrying three kinds of X-ray transparent light blocking filter, a fully closed, and a fully open position, is fitted to each EPIC instrument. The CCDs are cooled passively and are under full closed loop thermal control. A radio-active source is fitted for internal calibration. Data are processed on-board to save telemetry by removing cosmic ray tracks, and generating X-ray event files; a variety of different instrument modes are available to increase the dynamic range of the instrument and to enable fast timing. The instruments were calibrated using laboratory X-ray beams, and synchrotron generated monochromatic X-ray beams before launch; in-orbit calibration makes use of a variety of celestial X-ray targets. The current calibration is better than 10% over the entire energy range of 0.2 to 10 keV. All three instruments survived launch and are performing nominally in orbit. In particular full field-of-view coverage is available, all electronic modes work, and the energy resolution is close to pre-launch values. Radiation damage is well within pre-launch predictions and does not yet impact on the energy resolution. The scientific results from EPIC amply fulfil pre-launch expectations.
0

The AGILE Mission

M. Tavani et al.Jan 30, 2009
Context.  AGILE is an Italian Space Agency mission dedicated to observing the gamma-ray Universe. The AGILE's very innovative instrumentation for the first time combines a gamma-ray imager (sensitive in the energy range 30 MeV–50 GeV), a hard X-ray imager (sensitive in the range 18–60 keV), a calorimeter (sensitive in the range 350 keV–100 MeV), and an anticoincidence system. AGILE was successfully launched on 2007 April 23 from the Indian base of Sriharikota and was inserted in an equatorial orbit with very low particle background.Aims. AGILE provides crucial data for the study of active galactic nuclei, gamma-ray bursts, pulsars, unidentified gamma-ray sources, galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing.Methods. An optimal sky angular positioning (reaching 0.1 degrees in gamma-rays and 1–2 arcmin in hard X-rays) and very large fields of view (2.5 sr and 1 sr, respectively) are obtained by the use of Silicon detectors integrated in a very compact instrument.Results. AGILE surveyed the gamma-ray sky and detected many Galactic and extragalactic sources during the first months of observations. Particular emphasis is given to multifrequency observation programs of extragalactic and galactic objects.Conclusions. AGILE is a successful high-energy gamma-ray mission that reached its nominal scientific performance. The AGILE Cycle-1 pointing program started on 2007 December 1, and is open to the international community through a Guest Observer Program.
0

Euclid. III. The NISP instrument

K. Jahnkę et al.Jul 31, 2024
The Near-Infrared Spectrometer and Photometer (NISP) on board the satellite provides multiband photometry and $R slitless grism spectroscopy in the 950--2020\,nm wavelength range. In this reference article, we illuminate the background of NISP's functional and calibration requirements, describe the instrument's integral components, and provide all its key properties. We also sketch the processes needed to understand how NISP operates and is calibrated as well as its technical potentials and limitations. Links to articles providing more details and the technical background are included. The NISP's 16 H2RG detectors with a plate scale of $ deliver a field of view of 0.57\,deg$^2$. In photometric mode, NISP reaches a limiting magnitude of sim \,24.5\,AB\,mag in three photometric exposures of about 100\,s in exposure time for point sources and with a S/N of five. For spectroscopy, NISP's point-source sensitivity is a SNR = 3.5 detection of an emission line with flux sim \,$2 $ integrated over two resolution elements of 13.4\ in 3times 560\,s grism exposures at 1.6\ (redshifted Halpha ). Our calibration includes on-ground and in-flight characterisation and monitoring of the pixel-based detector baseline, dark current, non-linearity, and sensitivity to guarantee a relative photometric accuracy better than 1.5<!PCT!> and a relative spectrophotometry better than 0.7<!PCT!>. The wavelength calibration must be accurate to 5\ or better. The NISP is the state-of-the-art instrument in the near-infrared for all science beyond small areas available from HST and JWST -- and it represents an enormous advance from any existing instrumentation due to its combination of field size and high throughput of telescope and instrument. During six-year survey covering 14\,000\,deg$^2$ of extragalactic sky, NISP will be the backbone in determining distances of more than a billion galaxies. Its near-infrared data will become a rich reference imaging and spectroscopy data set for the coming decades.
0
Paper
Citation1
0
Save
0

Euclid. IV. The NISP Calibration Unit

F. Hormuth et al.Jul 25, 2024
The near-infrared calibration unit (NI-CU) on board NISP is the first astronomical calibration lamp based on LED to be operated in space. is a mission in ESA's Cosmic Vision 2015--2025 framework to explore the dark universe and provide a next-level characterisation of the nature of gravitation, dark matter, and dark energy. Calibrating photometric and spectrometric measurements of galaxies to better than 1.5<!PCT!> accuracy in a survey homogeneously mapping sim \,14\,000\,deg$^2$ of extragalactic sky requires a very detailed characterisation of NIR detector properties as well as constant monitoring of them in flight. To cover two of the main contributions -- relative pixel-to-pixel sensitivity and non-linearity characteristics -- and to support other calibration activities, NI-CU was designed to provide spatially approximately homogeneous ($<$\,12<!PCT!> variations) and temporally stable illumination (0.1<!PCT!>--0.2<!PCT!> over 1200\,s) over the NISP detector plane with minimal power consumption and energy dissipation. NI-CU covers the spectral range sim \,nm -- at cryo-operating temperature -- at five fixed independent wavelengths to capture wavelength-dependent behaviour of the detectors, with fluence over a dynamic range of gtrsim \,100 from sim $. For this functionality, NI-CU is based on LED . We describe the rationale behind the decision and design process, the challenges in sourcing the right LED and the qualification process and lessons learned. We also provide a description of the completed NI-CU, its capabilities, and performance as well as its limits. NI-CU has been integrated into NISP and the satellite, and since launch in July 2023, it has started supporting survey operations.