FZ
F. Zerbi
Author with expertise in Stellar Astrophysics and Exoplanet Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
5,425
h-index:
34
/
i10-index:
79
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TheSwiftGamma‐Ray Burst Mission

N. Gehrels et al.Aug 20, 2004
The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr-1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z > 10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector that will detect bursts, calculate 1'-4' positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5'' positions and perform spectroscopy in the 0.2-10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 03 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of ~1 mcrab (~2 × 10-11 ergs cm-2 s-1 in the 15-150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients, with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community, and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program for the mission will provide funding for community involvement. Innovations from the Swift program applicable to the future include (1) a large-area gamma-ray detector using the new CdZnTe detectors, (2) an autonomous rapid-slewing spacecraft, (3) a multiwavelength payload combining optical, X-ray, and gamma-ray instruments, (4) an observing program coordinated with other ground-based and space-based observatories, and (5) immediate multiwavelength data flow to the community. The mission is currently funded for 2 yr of operations, and the spacecraft will have a lifetime to orbital decay of ~8 yr.
0

Broadband observations of the naked-eye γ-ray burst GRB 080319B

J. Racusin et al.Sep 1, 2008
Long-duration γ-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and γ-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet. The γ-ray burst GRB 080319B, the result of the violent collapse of a massive star to form a black hole, is the most luminous optical flash so far observed in the 40-year history of γ-ray astronomy. Discovered by the Swift satellite on 19 March 2008 and briefly visible to the naked eye, it produces energy across the entire electromagnetic spectrum. Now a reanalysis of the extraordinarily bright emissions of GRB 080319B within a few seconds of its formation, together with broadband observations of its decay over the following few weeks, provide the clearest picture yet of one of these events. The data clearly establish that the prompt optical flash was produced in the same physical region as the γ-ray burst itself. The afterglow properties cannot be explained by the standard simple models, but rather imply a multi-component jet interpretation. Long duration γ-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and provide a window into the process of black hole formation from the collapse of massive stars. Observations of the extraordinarily bright prompt optical and γ-ray emission of GRB 080319B shows that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.
0

ESPRESSO at VLT

F. Pepe et al.Nov 3, 2020
ESPRESSO is the new high-resolution spectrograph of ESO's Very-Large Telescope (VLT). It was designed for ultra-high radial-velocity precision and extreme spectral fidelity with the aim of performing exoplanet research and fundamental astrophysical experiments with unprecedented precision and accuracy. It is able to observe with any of the four Unit Telescopes (UT) of the VLT at a spectral resolving power of 140,000 or 190,000 over the 378.2 to 788.7 nm wavelength range, or with all UTs together, turning the VLT into a 16-m diameter equivalent telescope in terms of collecting area, while still providing a resolving power of 70,000. We provide a general description of the ESPRESSO instrument, report on the actual on-sky performance, and present our Guaranteed-Time Observation (GTO) program with its first results. ESPRESSO was installed on the Paranal Observatory in fall 2017. Commissioning (on-sky testing) was conducted between December 2017 and September 2018. The instrument saw its official start of operations on October 1st, 2018, but improvements to the instrument and re-commissioning runs were conducted until July 2019. The measured overall optical throughput of ESPRESSO at 550 nm and a seeing of 0.65 arcsec exceeds the 10% mark under nominal astro-climatic conditions. We demonstrate a radial-velocity precision of better than 25 cm/s during one night and 50 cm/s over several months. These values being limited by photon noise and stellar jitter show that the performanceis compatible with an instrumental precision of 10 cm/s. No difference has been measured across the UTs neither in throughput nor RV precision. The combination of the large collecting telescope area with the efficiency and the exquisite spectral fidelity of ESPRESSO opens a new parameter space in RV measurements, the study of planetary atmospheres, fundamental constants, stellar characterisation and many other fields.
0
Paper
Citation315
0
Save
0

ESPRESSO: The next European exoplanet hunter

F. Pepe et al.Jan 1, 2014
Abstract The acronym ESPRESSO stems for Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations; this instrument will be the next VLT high resolution spectrograph. The spectrograph will be installed at the Combined‐Coudé Laboratory of the VLT and linked to the four 8.2 m Unit Telescopes (UT) through four optical Coudé trains. ESPRESSO will combine efficiency and extreme spectroscopic precision. ESPRESSO is foreseen to achieve a gain of two magnitudes with respect to its predecessor HARPS, and to improve the instrumental radial‐velocity precision to reach the 10 cm s –1 level. It can be operated either with a single UT or with up to four UTs, enabling an additional gain in the latter mode. The incoherent combination of four telescopes and the extreme precision requirements called for many innovative design solutions while ensuring the technical heritage of the successful HARPS experience. ESPRESSO will allow to explore new frontiers in most domains of astro‐physics that require precision and sensitivity. The main scientific drivers are the search and characterization of rocky exoplanets in the habitable zone of quiet, nearby G to M‐dwarfs and the analysis of the variability of fundamental physical constants. The project passed the final design review in May 2013 and entered the manufacturing phase. ESPRESSO will be installed at the Paranal Observatory in 2016 and its operation is planned to start by the end of the same year. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
0
Paper
Citation208
0
Save
0

Euclid. IV. The NISP Calibration Unit

F. Hormuth et al.Jul 25, 2024
The near-infrared calibration unit (NI-CU) on board NISP is the first astronomical calibration lamp based on LED to be operated in space. is a mission in ESA's Cosmic Vision 2015--2025 framework to explore the dark universe and provide a next-level characterisation of the nature of gravitation, dark matter, and dark energy. Calibrating photometric and spectrometric measurements of galaxies to better than 1.5<!PCT!> accuracy in a survey homogeneously mapping sim \,14\,000\,deg$^2$ of extragalactic sky requires a very detailed characterisation of NIR detector properties as well as constant monitoring of them in flight. To cover two of the main contributions -- relative pixel-to-pixel sensitivity and non-linearity characteristics -- and to support other calibration activities, NI-CU was designed to provide spatially approximately homogeneous ($<$\,12<!PCT!> variations) and temporally stable illumination (0.1<!PCT!>--0.2<!PCT!> over 1200\,s) over the NISP detector plane with minimal power consumption and energy dissipation. NI-CU covers the spectral range sim \,nm -- at cryo-operating temperature -- at five fixed independent wavelengths to capture wavelength-dependent behaviour of the detectors, with fluence over a dynamic range of gtrsim \,100 from sim $. For this functionality, NI-CU is based on LED . We describe the rationale behind the decision and design process, the challenges in sourcing the right LED and the qualification process and lessons learned. We also provide a description of the completed NI-CU, its capabilities, and performance as well as its limits. NI-CU has been integrated into NISP and the satellite, and since launch in July 2023, it has started supporting survey operations.