YL
Yamin Li
Author with expertise in Mechanisms and Applications of RNA Interference
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
16
(44% Open Access)
Cited by:
1,724
h-index:
32
/
i10-index:
54
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents

Xue Gao et al.Dec 19, 2017
Although genetic factors contribute to almost half of all cases of deafness, treatment options for genetic deafness are limited. We developed a genome-editing approach to target a dominantly inherited form of genetic deafness. Here we show that cationic lipid-mediated in vivo delivery of Cas9-guide RNA complexes can ameliorate hearing loss in a mouse model of human genetic deafness. We designed and validated, both in vitro and in primary fibroblasts, genome editing agents that preferentially disrupt the dominant deafness-associated allele in the Tmc1 (transmembrane channel-like gene family 1) Beethoven (Bth) mouse model, even though the mutant Tmc1Bth allele differs from the wild-type allele at only a single base pair. Injection of Cas9-guide RNA-lipid complexes targeting the Tmc1Bth allele into the cochlea of neonatal Tmc1Bth/+ mice substantially reduced progressive hearing loss. We observed higher hair cell survival rates and lower auditory brainstem response thresholds in injected ears than in uninjected ears or ears injected with control complexes that targeted an unrelated gene. Enhanced acoustic startle responses were observed among injected compared to uninjected Tmc1Bth/+ mice. These findings suggest that protein-RNA complex delivery of target gene-disrupting agents in vivo is a potential strategy for the treatment of some types of autosomal-dominant hearing loss.
0
Citation446
0
Save
0

Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8 + T cell response

Jinjin Chen et al.Aug 15, 2022
The targeted delivery of messenger RNA (mRNA) to desired organs remains a great challenge for in vivo applications of mRNA technology. For mRNA vaccines, the targeted delivery to the lymph node (LN) is predicted to reduce side effects and increase the immune response. In this study, we explored an endogenously LN-targeting lipid nanoparticle (LNP) without the modification of any active targeting ligands for developing an mRNA cancer vaccine. The LNP named 113-O12B showed increased and specific expression in the LN compared with LNP formulated with ALC-0315, a synthetic lipid used in the COVID-19 vaccine Comirnaty. The targeted delivery of mRNA to the LN increased the CD8 + T cell response to the encoded full-length ovalbumin (OVA) model antigen. As a result, the protective and therapeutic effect of the OVA-encoding mRNA vaccine on the OVA-antigen–bearing B16F10 melanoma model was also improved. Moreover, 113-O12B encapsulated with TRP-2 peptide (TRP2 180–188 )–encoding mRNA also exhibited excellent tumor inhibition, with the complete response of 40% in the regular B16F10 tumor model when combined with anti–programmed death-1 (PD-1) therapy, revealing broad application of 113-O12B from protein to peptide antigens. All the treated mice showed long-term immune memory, hindering the occurrence of tumor metastatic nodules in the lung in the rechallenging experiments that followed. The enhanced antitumor efficacy of the LN-targeting LNP system shows great potential as a universal platform for the next generation of mRNA vaccines.
0

In Vitro and In Vivo Study of Amphotericin B Formulation with Quaternized Bioreducible Lipidoids

Fang Liu et al.Jan 10, 2020
Invasive fungal infections are well-known causes of morbidity and mortality in immunocompromised patients. Amphotericin B (AmB) is a polyene fungicidal agent with excellent properties of the broad antifungal spectrum, high activity, and relatively rare drug resistance. However, significant toxicities limit the clinical application of AmB and its conventional formulation AmB deoxycholate (Fungizone). Here we investigated nanoparticle formulations of AmB using synthetic biodegradable lipidoids and evaluated their stability, in vitro antifungal efficacy, and in vivo toxicity and pharmacokinetics. We found that the AmB formulated using a mixture of quaternized lipidoid (Q78-O14B) and DSPE-PEG2000 has the size around 70-100 nm and is stable during storage. The formulation showed no hemotoxicity to red blood cells (RBCs) in vitro. It also possesses the highest antifungal activity (in vitro) and lowest toxicity (both in vitro and in vivo). These metrics are significantly superior to the commercial antifungal product Fungizone. Meanwhile, AmB/Q78-O14B-P exhibited prolonged blood circulation in comparison to Fungizone in vivo. In AmB/Q78-O14B-P formulation, AmB was still detectable in the liver, spleen, and lung tissues with a concentration above the minimum inhibitory concentrations 72 h after low-dose intravenous injection. Based on these results, AmB in lipidoid nanoparticle formulation may produce sustained antifungal activity against blood-borne and systemic organ infections. Moreover, the new AmB formulation showed low nephrotoxicity and hepatotoxicity in rats even at high doses, allowing a dramatically wider and safer therapeutic window than Fungizone. This method provides a means to develop much needed antifungal agents that will be more therapeutically efficacious, more affordable (than AmBisome), and less toxic (than Fungizone) for the treatment of systemic fungal infections.
0
Citation15
0
Save
Load More