MF
Mohammad Faghihi
Author with expertise in Regulation of RNA Processing and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
4,026
h-index:
35
/
i10-index:
65
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Antisense Transcription in the Mammalian Transcriptome

Shintaro Katayama et al.Sep 1, 2005
+28
T
Y
S
Antisense transcription (transcription from the opposite strand to a protein-coding or sense strand) has been ascribed roles in gene regulation involving degradation of the corresponding sense transcripts (RNA interference), as well as gene silencing at the chromatin level. Global transcriptome analysis provides evidence that a large proportion of the genome can produce transcripts from both strands, and that antisense transcripts commonly link neighboring “genes” in complex loci into chains of linked transcriptional units. Expression profiling reveals frequent concordant regulation of sense/antisense pairs. We present experimental evidence that perturbation of an antisense RNA can alter the expression of sense messenger RNAs, suggesting that antisense transcription contributes to control of transcriptional outputs in mammals.
0
Citation1,640
0
Save
0

Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase

Mohammad Faghihi et al.Jun 29, 2008
+7
A
F
M
BACE is an enzyme necessary for the generation of neurotoxic amyloid-β in Alzheimer's disease. Claes Wahlestedt and his colleagues identify a noncoding RNA that is upregulated in the brains of individuals with Alzheimer's disase. This noncoding RNA increases expression of BACE, driving amyloid-β generation and possibly disease progression. Recent efforts have revealed that numerous protein-coding messenger RNAs have natural antisense transcript partners, most of which seem to be noncoding RNAs. Here we identify a conserved noncoding antisense transcript for β-secretase-1 (BACE1), a crucial enzyme in Alzheimer's disease pathophysiology. The BACE1-antisense transcript (BACE1-AS) regulates BACE1 mRNA and subsequently BACE1 protein expression in vitro and in vivo. Upon exposure to various cell stressors including amyloid-β 1–42 (Aβ 1–42), expression of BACE1-AS becomes elevated, increasing BACE1 mRNA stability and generating additional Aβ 1–42 through a post-transcriptional feed-forward mechanism. BACE1-AS concentrations were elevated in subjects with Alzheimer's disease and in amyloid precursor protein transgenic mice. These data show that BACE1 mRNA expression is under the control of a regulatory noncoding RNA that may drive Alzheimer's disease–associated pathophysiology. In summary, we report that a long noncoding RNA is directly implicated in the increased abundance of Aβ 1–42 in Alzheimer's disease.
0
Citation1,290
0
Save
0

Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation

Farzaneh Modarresi et al.Mar 25, 2012
+4
M
M
F
Methods for specific gene silencing have advanced as far as clinical trials, but a similar set of tools does not exist for increasing gene expression. Modarresi et al. demonstrate gene-specific upregulation in vivo by treating mice with oligonucleotides that inhibit the function of natural antisense transcripts. The ability to specifically upregulate genes in vivo holds great therapeutic promise. Here we show that inhibition or degradation of natural antisense transcripts (NATs) by single-stranded oligonucleotides or siRNAs can transiently and reversibly upregulate locus-specific gene expression. Brain-derived neurotrophic factor (BDNF) is normally repressed by a conserved noncoding antisense RNA transcript, BDNF-AS. Inhibition of this transcript upregulates BDNF mRNA by two- to sevenfold, alters chromatin marks at the BDNF locus, leads to increased protein levels and induces neuronal outgrowth and differentiation both in vitro and in vivo. We also show that inhibition of NATs leads to increases in glial-derived neurotrophic factor (GDNF) and ephrin receptor B2 (EPHB2) mRNA. Our data suggest that pharmacological approaches targeting NATs can confer locus-specific gene upregulation effects.
0
Citation598
0
Save
0

Evidence for natural antisense transcript-mediated inhibition of microRNA function

Mohammad Faghihi et al.May 1, 2010
+6
J
M
M
MicroRNAs (miRNAs) have the potential to regulate diverse sets of mRNA targets. In addition, mammalian genomes contain numerous natural antisense transcripts, most of which appear to be non-protein-coding RNAs (ncRNAs). We have recently identified and characterized a highly conserved non-coding antisense transcript for beta-secretase-1 (BACE1), a critical enzyme in Alzheimer's disease pathophysiology. The BACE1-antisense transcript is markedly up-regulated in brain samples from Alzheimer's disease patients and promotes the stability of the (sense) BACE1 transcript.We report here that BACE1-antisense prevents miRNA-induced repression of BACE1 mRNA by masking the binding site for miR-485-5p. Indeed, miR-485-5p and BACE1-antisense compete for binding within the same region in the open reading frame of the BACE1 mRNA. We observed opposing effects of BACE1-antisense and miR-485-5p on BACE1 protein in vitro and showed that Locked Nucleic Acid-antimiR mediated knockdown of miR-485-5p as well as BACE1-antisense over-expression can prevent the miRNA-induced BACE1 suppression. We found that the expression of BACE1-antisense as well as miR-485-5p are dysregulated in RNA samples from Alzheimer's disease subjects compared to control individuals.Our data demonstrate an interface between two distinct groups of regulatory RNAs in the computation of BACE1 gene expression. Moreover, bioinformatics analyses revealed a theoretical basis for many other potential interactions between natural antisense transcripts and miRNAs at the binding sites of the latter.
0
Citation493
0
Save
0

Biallelic variants in TMEM222 cause a new autosomal recessive neurodevelopmental disorder

D.L. Polla et al.Jul 1, 2021
+46
Z
M
D

Abstract

Purpose

 To elucidate the novel molecular cause in families with a new autosomal recessive neurodevelopmental disorder. 

Methods

 A combination of exome sequencing and gene matching tools was used to identify pathogenic variants in 17 individuals. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and subcellular localization studies were used to characterize gene expression profile and localization. 

Results

 Biallelic variants in the TMEM222 gene were identified in 17 individuals from nine unrelated families, presenting with intellectual disability and variable other features, such as aggressive behavior, shy character, body tremors, decreased muscle mass in the lower extremities, and mild hypotonia. We found relatively high TMEM222 expression levels in the human brain, especially in the parietal and occipital cortex. Additionally, subcellular localization analysis in human neurons derived from induced pluripotent stem cells (iPSCs) revealed that TMEM222 localizes to early endosomes in the synapses of mature iPSC-derived neurons. 

Conclusion

 Our findings support a role for TMEM222 in brain development and function and adds variants in the gene TMEM222 as a novel underlying cause of an autosomal recessive neurodevelopmental disorder.
0
Citation5
0
Save