WZ
Wei Zhou
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(69% Open Access)
Cited by:
4,742
h-index:
55
/
i10-index:
153
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

FinnGen provides genetic insights from a well-phenotyped isolated population

Mitja Kurki et al.Jan 18, 2023
Abstract Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored 1,2 . FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10 –11 ) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.
0
Citation1,372
0
Save
1

Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies

Wei Zhou et al.Aug 8, 2018
In genome-wide association studies (GWAS) for thousands of phenotypes in large biobanks, most binary traits have substantially fewer cases than controls. Both of the widely used approaches, the linear mixed model and the recently proposed logistic mixed model, perform poorly; they produce large type I error rates when used to analyze unbalanced case-control phenotypes. Here we propose a scalable and accurate generalized mixed model association test that uses the saddlepoint approximation to calibrate the distribution of score test statistics. This method, SAIGE (Scalable and Accurate Implementation of GEneralized mixed model), provides accurate P values even when case-control ratios are extremely unbalanced. SAIGE uses state-of-art optimization strategies to reduce computational costs; hence, it is applicable to GWAS for thousands of phenotypes by large biobanks. Through the analysis of UK Biobank data of 408,961 samples from white British participants with European ancestry for > 1,400 binary phenotypes, we show that SAIGE can efficiently analyze large sample data, controlling for unbalanced case-control ratios and sample relatedness. SAIGE (Scalable and Accurate Implementation of GEneralized mixed model) is a generalized mixed model association test that can efficiently analyze large data sets while controlling for unbalanced case-control ratios and sample relatedness, as shown by applying SAIGE to the UK Biobank data for > 1,400 binary phenotypes.
1
Citation1,026
0
Save
0

Biobank-driven genomic discovery yields new insight into atrial fibrillation biology

Jonas Nielsen et al.Jul 26, 2018
To identify genetic variation underlying atrial fibrillation, the most common cardiac arrhythmia, we performed a genome-wide association study of >1,000,000 people, including 60,620 atrial fibrillation cases and 970,216 controls. We identified 142 independent risk variants at 111 loci and prioritized 151 functional candidate genes likely to be involved in atrial fibrillation. Many of the identified risk variants fall near genes where more deleterious mutations have been reported to cause serious heart defects in humans (GATA4, MYH6, NKX2-5, PITX2, TBX5)1, or near genes important for striated muscle function and integrity (for example, CFL2, MYH7, PKP2, RBM20, SGCG, SSPN). Pathway and functional enrichment analyses also suggested that many of the putative atrial fibrillation genes act via cardiac structural remodeling, potentially in the form of an ‘atrial cardiomyopathy’2, either during fetal heart development or as a response to stress in the adult heart. Large-scale association analyses identify 142 independent risk variants for atrial fibrillation. Pathway and functional enrichment analyses suggest that many of the putative risk genes act via cardiac structural remodeling.
0
Citation639
0
Save
0

Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk

Oddgeir Holmen et al.Mar 16, 2014
Cristen Willer, Kristian Hveem and colleagues use an exome array to identify a coding variant in TM6SF2 that is associated with total cholesterol levels. They further show that transient overexpression of TM6SF2 or knockdown of Tm6sf2 in mice alters serum lipid profiles, implicating TM6SF2 as a causal regulator of lipid traits. Blood lipid levels are heritable, treatable risk factors for cardiovascular disease. We systematically assessed genome-wide coding variation to identify new genes influencing lipid traits, fine map known lipid loci and evaluate whether low-frequency variants with large effects exist for these traits. Using an exome array, we genotyped 80,137 coding variants in 5,643 Norwegians. We followed up 18 variants in 4,666 Norwegians and identified ten loci with coding variants associated with a lipid trait (P < 5 × 10−8). One variant in TM6SF2 (encoding p.Glu167Lys), residing in a known genome-wide association study locus for lipid traits, influences total cholesterol levels and is associated with myocardial infarction. Transient TM6SF2 overexpression or knockdown of Tm6sf2 in mice alters serum lipid profiles, consistent with the association observed in humans, identifying TM6SF2 as a functional gene within a locus previously known as NCAN-CILP2-PBX4 or 19p13. This study demonstrates that systematic assessment of coding variation can quickly point to a candidate causal gene.
0
Citation272
0
Save
12

An efficient and accurate frailty model approach for genome-wide survival association analysis controlling for population structure and relatedness in large-scale biobanks

Rounak Dey et al.Nov 1, 2020
Abstract With decades of electronic health records linked to genetic data, large biobanks provide unprecedented opportunities for systematically understanding the genetics of the natural history of complex diseases. Genome-wide survival association analysis can identify genetic variants associated with ages of onset, disease progression and lifespan. We developed an efficient and accurate frailty (random effects) model approach for genome-wide survival association analysis of censored time-to-event (TTE) phenotypes in large biobanks by accounting for both population structure and relatedness. Our method utilizes state-of-the-art optimization strategies to reduce the computational cost. The saddlepoint approximation is used to allow for analysis of heavily censored phenotypes (>90%) and low frequency variants (down to minor allele count 20). We demonstrated the performance of our method through extensive simulation studies and analysis of five TTE phenotypes, including lifespan, with heavy censoring rates (90.9% to 99.8%) on ~400,000 UK Biobank participants with white British ancestry and ~180,000 samples in FinnGen, respectively. We further performed genome-wide association analysis for 871 TTE phenotypes in UK Biobank and presented the genome-wide scale phenome-wide association (PheWAS) results with the PheWeb browser.
12
Citation12
0
Save
0

Comparative genetic architectures of schizophrenia in East Asian and European populations

Max Lam et al.Oct 17, 2018
Author summary Schizophrenia is a severe psychiatric disorder with a lifetime risk of about 1% world-wide. Most large schizophrenia genetic studies have studied people of primarily European ancestry, potentially missing important biological insights. Here we present a study of East Asian participants (22,778 schizophrenia cases and 35,362 controls), identifying 21 genome-wide significant schizophrenia associations in 19 genetic loci. Over the genome, the common genetic variants that confer risk for schizophrenia have highly similar effects in those of East Asian and European ancestry (r g =0.98), indicating for the first time that the genetic basis of schizophrenia and its biology are broadly shared across these world populations. A fixed-effect meta-analysis including individuals from East Asian and European ancestries revealed 208 genome-wide significant schizophrenia associations in 176 genetic loci (53 novel). Trans-ancestry fine-mapping more precisely isolated schizophrenia causal alleles in 70% of these loci. Despite consistent genetic effects across populations, polygenic risk models trained in one population have reduced performance in the other, highlighting the importance of including all major ancestral groups with sufficient sample size to ensure the findings have maximum relevance for all populations.
0
Citation12
0
Save
Load More