XL
Xin Lan
Author with expertise in Global Methane Emissions and Impacts
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
870
h-index:
31
/
i10-index:
59
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Global Carbon Budget 2023

Pierre Friedlingstein et al.Nov 30, 2023
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based fCO2 products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2022, EFOS increased by 0.9 % relative to 2021, with fossil emissions at 9.9±0.5 Gt C yr−1 (10.2±0.5 Gt C yr−1 when the cement carbonation sink is not included), and ELUC was 1.2±0.7 Gt C yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1±0.8 Gt C yr−1 (40.7±3.2 Gt CO2 yr−1). Also, for 2022, GATM was 4.6±0.2 Gt C yr−1 (2.18±0.1 ppm yr−1; ppm denotes parts per million), SOCEAN was 2.8±0.4 Gt C yr−1, and SLAND was 3.8±0.8 Gt C yr−1, with a BIM of −0.1 Gt C yr−1 (i.e. total estimated sources marginally too low or sinks marginally too high). The global atmospheric CO2 concentration averaged over 2022 reached 417.1±0.1 ppm. Preliminary data for 2023 suggest an increase in EFOS relative to 2022 of +1.1 % (0.0 % to 2.1 %) globally and atmospheric CO2 concentration reaching 419.3 ppm, 51 % above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959–2022, with a near-zero overall budget imbalance, although discrepancies of up to around 1 Gt C yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living-data update documents changes in methods and data sets applied to this most recent global carbon budget as well as evolving community understanding of the global carbon cycle. The data presented in this work are available at https://doi.org/10.18160/GCP-2023 (Friedlingstein et al., 2023).
0
Paper
Citation313
0
Save
1

Atmospheric Methane: Comparison Between Methane's Record in 2006–2022 and During Glacial Terminations

E. Nisbet et al.Jul 15, 2023
Abstract Atmospheric methane's rapid growth from late 2006 is unprecedented in the observational record. Assessment of atmospheric methane data attributes a large fraction of this atmospheric growth to increased natural emissions over the tropics, which appear to be responding to changes in anthropogenic climate forcing. Isotopically lighter measurements of are consistent with the recent atmospheric methane growth being mainly driven by an increase in emissions from microbial sources, particularly wetlands. The global methane budget is currently in disequilibrium and new inputs are as yet poorly quantified. Although microbial emissions from agriculture and waste sources have increased between 2006 and 2022 by perhaps 35 Tg/yr, with wide uncertainty, approximately another 35–45 Tg/yr of the recent net growth in methane emissions may have been driven by natural biogenic processes, especially wetland feedbacks to climate change. A model comparison shows that recent changes may be comparable or greater in scale and speed than methane's growth and isotopic shift during past glacial/interglacial termination events. It remains possible that methane's current growth is within the range of Holocene variability, but it is also possible that methane's recent growth and isotopic shift may indicate a large‐scale reorganization of the natural climate and biosphere is under way.
1
Paper
Citation33
0
Save
0

Indicators of Global Climate Change 2023: annual update of key indicators of the state of the climate system and human influence

Piers Forster et al.Jun 4, 2024
Abstract. Intergovernmental Panel on Climate Change (IPCC) assessments are the trusted source of scientific evidence for climate negotiations taking place under the United Nations Framework Convention on Climate Change (UNFCCC). Evidence-based decision-making needs to be informed by up-to-date and timely information on key indicators of the state of the climate system and of the human influence on the global climate system. However, successive IPCC reports are published at intervals of 5–10 years, creating potential for an information gap between report cycles. We follow methods as close as possible to those used in the IPCC Sixth Assessment Report (AR6) Working Group One (WGI) report. We compile monitoring datasets to produce estimates for key climate indicators related to forcing of the climate system: emissions of greenhouse gases and short-lived climate forcers, greenhouse gas concentrations, radiative forcing, the Earth's energy imbalance, surface temperature changes, warming attributed to human activities, the remaining carbon budget, and estimates of global temperature extremes. The purpose of this effort, grounded in an open-data, open-science approach, is to make annually updated reliable global climate indicators available in the public domain (https://doi.org/10.5281/zenodo.11388387, Smith et al., 2024a). As they are traceable to IPCC report methods, they can be trusted by all parties involved in UNFCCC negotiations and help convey wider understanding of the latest knowledge of the climate system and its direction of travel. The indicators show that, for the 2014–2023 decade average, observed warming was 1.19 [1.06 to 1.30] °C, of which 1.19 [1.0 to 1.4] °C was human-induced. For the single-year average, human-induced warming reached 1.31 [1.1 to 1.7] °C in 2023 relative to 1850–1900. The best estimate is below the 2023-observed warming record of 1.43 [1.32 to 1.53] °C, indicating a substantial contribution of internal variability in the 2023 record. Human-induced warming has been increasing at a rate that is unprecedented in the instrumental record, reaching 0.26 [0.2–0.4] °C per decade over 2014–2023. This high rate of warming is caused by a combination of net greenhouse gas emissions being at a persistent high of 53±5.4 Gt CO2e yr−1 over the last decade, as well as reductions in the strength of aerosol cooling. Despite this, there is evidence that the rate of increase in CO2 emissions over the last decade has slowed compared to the 2000s, and depending on societal choices, a continued series of these annual updates over the critical 2020s decade could track a change of direction for some of the indicators presented here.
0
Paper
Citation16
0
Save
1

Atmospheric methane: Comparison between methane’s record in 2006-2022 and during glacial terminations.

E. Nisbet et al.Feb 20, 2023
Atmospheric methane’s rapid growth from 2006 to the present is unprecedented in the observational record. Isotopic evidence implies the growth is mainly driven by an increase in biogenically-sourced emissions, both from wetlands and ruminants, and waste. A significant part of methane’s current rise may come not from direct anthropogenic emissions and land use changes, but rather from a combination of natural biogenic feedback responses, occurring in response to the anthropogenic forcing. Although microbial emissions from agricultural and waste have increased between 2006-2020 by about 35 Tg/yr, perhaps 35-40 Tg/yr of the recent net growth in methane emissions may have been driven by natural biogenic processes, especially wetland feedbacks to climate change. Modelling comparison between the biogenic component of methane’s growth and isotopic shift in the 15 years from 2007-2022, and the global-scale climate reorganisations during the transitions from glacial to interglacial periods in the Pleistocene, shows that the modern growth event is comparable to or greater than the scale and speed of methane’s growth and isotopic shift during past glacial/interglacial termination events. It remains possible that current changes are related to decadal- or centennial-scale variability in precipitation and temperature and remain within the range of Holocene variability, or due to direct anthropogenic actions. But, though any current transition will differ greatly from the past glacial-interglacial changes, it is also possible methane’s remarkable growth and isotopic shift that began in 2006 may be a first indicator that a very large-scale reorganisation of the natural climate and biosphere system is under way.
1
Paper
Citation10
0
Save
0

Global nitrous oxide budget (1980–2020)

Hanqin Tian et al.Jun 11, 2024
Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).
0
Paper
Citation3
0
Save
0

Flow Characteristics Analysis of Load Rejection Transition Process in Pumped Storage Unit Based on Cavitation Model

Q. Li et al.Jul 3, 2024
Concerning dual-carbon applications, establishing a new energy-dominated power system to achieve carbon peaking and carbon neutrality objectives is imperative. Pumped storage units excel in this context, owing to their unique advantages. During the load-shedding process of the pump turbine, the intricate flow patterns and cavitation phenomena substantially influence the flow field. This study introduces a cavitation model to perform numerical simulations of load rejection processes in pumped storage power plants, aiming to thoroughly investigate the impact of cavitation phenomena on the units. The results indicate that as the rotational speed increases, the dynamic and static interference within the no-blade region becomes notable, resulting in pressure pulsations within the guide vane region and exacerbating structural deformation and fatigue failures. Moreover, deviations from the designated operational point disrupt the symmetry of the flow field, leading to irregular changes in radial forces. Accounting for the mass disturbance and changes in wave velocity attributable to a cavitation phase transition, pressure fluctuation amplitude increases within the draft tube, consequently engendering complex flow phenomena. These findings offer indispensable guidance for the optimal design and safe operation of pump turbines within new power systems.
0
Paper
Citation1
0
Save
0

An Improved Real-Time Detection Transformer Model for the Intelligent Survey of Traffic Safety Facilities

Yan Wan et al.Nov 21, 2024
The undertaking of traffic safety facility (TSF) surveys represents a significant labor-intensive endeavor, which is not sustainable in the long term. The subject of traffic safety facility recognition (TSFR) is beset with numerous challenges, including those associated with background misclassification, the diminutive dimensions of the targets, the spatial overlap of detection targets, and the failure to identify specific targets. In this study, transformer-based and YOLO (You Only Look Once) series target detection algorithms were employed to construct TSFR models to ensure both recognition accuracy and efficiency. The TSF image dataset, comprising six categories of TSFs in urban areas of three cities, was utilized for this research. The dimensions and intricacies of the Detection Transformer (DETR) family of models are considerably more substantial than those of the YOLO family. YOLO-World and Real-Time Detection Transformer (RT-DETR) models were optimal and comparable for the TSFR task, with the former exhibiting a higher detection efficiency and the latter a higher detection accuracy. The RT-DETR model exhibited a notable reduction in model complexity by 57% in comparison to the DINO (DETR with improved denoising anchor boxes for end-to-end object detection) model while also demonstrating a slight enhancement in recognition accuracy. The incorporation of the RepGFPN (Reparameterized Generalized Feature Pyramid Network) module has markedly enhanced the multi-target detection accuracy of RT-DETR, with a mean average precision (mAP) of 82.3%. The introduction of RepGFPN significantly enhanced the detection rate of traffic rods, traffic sign boards, and water surround barriers and somewhat ameliorated the problem of duplicate detection.