FC
Fangquan Chen
Author with expertise in Mechanisms and Implications of Ferroptosis in Cancer
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
9
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Ferroptosis: principles and significance in health and disease

Fangquan Chen et al.Jun 6, 2024
Abstract Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia–reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.
0
Citation7
0
Save
0

Macropinocytosis inhibits alkaliptosis in pancreatic cancer cells through fatty acid uptake

Fangquan Chen et al.Jul 14, 2024
Abstract Alkaliptosis, a form of regulated cell death, is characterized by lysosomal dysfunction and intracellular pH alkalinization. The pharmacological induction of alkaliptosis using the small molecule compound JTC801 has emerged as a promising anticancer strategy in various types of cancers, particularly pancreatic ductal adenocarcinoma (PDAC). In this study, we investigate a novel mechanism by which macropinocytosis, an endocytic process involving the uptake of extracellular material, promotes resistance to alkaliptosis in human PDAC cells. Through lipid metabolomics analysis and functional studies, we demonstrate that the inhibition of alkaliptosis by fatty acids, such as oleic acid, is not dependent on endogenous synthetic pathways but rather on exogenous uptake facilitated by macropinocytosis. Consequently, targeting macropinocytosis through pharmacological approaches (e.g. using EIPA or EHoP-016) or genetic interventions (e.g. RAC1 knockdown) effectively enhances JTC801-induced alkaliptosis in human PDAC cells. These findings provide compelling evidence that the modulation of macropinocytosis can increase the sensitivity of cancer cells to alkaliptosis inducers.
0
Citation1
0
Save
0

NFE2L2 and SLC25A39 drive cuproptosis resistance through GSH metabolism

Jiao Liu et al.Nov 28, 2024
Cuproptosis is a recently discovered form of regulated cell death triggered by mitochondrial copper accumulation and proteotoxic stress. Here, we provide the first evidence that glutathione (GSH), a major non-protein thiol in cells, acts as a cuproptosis inhibitor in pancreatic ductal adenocarcinoma (PDAC) cells. Mechanistically, GSH inhibits cuproptosis by chelating copper, contrasting its role in blocking ferroptosis by inhibiting lipid peroxidation. The classical cuproptosis inducer, ES-Cu (elesclomol plus copper), increases the protein stability of the transcription factor NFE2L2 (also known as NRF2), leading to the upregulation of gene expression of glutamate-cysteine ligase modifier subunit (GCLM) and glutamate-cysteine ligase catalytic subunit (GCLC). GCLM and GCLC are rate-limiting enzymes in GSH synthesis, and increased GSH is transported into mitochondria via the solute carrier family 25 member 39 (SLC25A39) transporter. Consequently, genetic inhibition of the NFE2L2-GSH-SLC25A39 pathway enhances cuproptosis-mediated tumor suppression in cell culture and in mouse tumor models. These findings not only reveal distinct mechanisms of GSH in inhibiting cuproptosis and ferroptosis, but also suggest a potential combination strategy to suppress PDAC tumor growth.
0
Citation1
0
Save
0

ITCH inhibits alkaliptosis in human pancreatic cancer cells through YAP1-dependent SLC16A1 activation

Xiutao Cai et al.Aug 1, 2024
Alkaliptosis is a type of pH-dependent cell death and plays an emerging role in tumor suppression. However, the key modulation mechanism of alkaliptosis remains largely unknown. In particular, the nucleus, as the centre of genetic and metabolic regulation, is crucial for the regulation of cellular life. It is not known whether nuclear proteins are involved in the regulation of alkaliptosis. Here, we isolated nuclear proteins to perform a proteomics that identified itchy E3 ubiquitin protein ligase (ITCH) as a natural inhibitor of alkaliptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. The downregulation of ITCH protein is associated with the induction of alkaliptosis in three human PDAC cell lines (SW1990, MiaPaCa2, and PANC1). Functionally, increasing ITCH expression reduces JTC801-induced growth inhibition and cell death. In contrast, knocking down ITCH using specific shRNA increases JTC801-induced cell growth inhibition in the short or long term, resulting in increased cell death. Mechanistically, JTC801-induced ITCH inhibition blocks large tumor suppressor kinase 1 (LATS1) ubiquitination, which in turn suppresses Yes1 associated transcriptional regulator (YAP1)-dependent the transcriptional activation of solute carrier family 16 member 1 (SLC16A1), a proton-linked monocarboxylate transporter that inhibits JTC801-induced alkaliptosis. Additionally, decreased expression of ITCH is associated with longer survival times in patients with PDAC. Collectively, our results establish an ITCH-dependent pathway that regulates alkaliptotic sensitivity in PDAC cells and deepen the understanding of alkaliptosis in targeted therapy.
0

Ciprofloxacin is a novel anti-ferroptotic antibiotic

Fangquan Chen et al.Jun 1, 2024
Cancer patients undergoing chemotherapy are susceptible to various bacterial infections, necessitating prompt and precise antimicrobial treatment with antibiotics. Ciprofloxacin is a clinically utilized broad-spectrum antimicrobial agent known for its robust antiseptic activity. While ferroptosis, an oxidative form of cell death, has garnered attention as a promising avenue in cancer therapy, the potential impact of ciprofloxacin on the anticancer effects of ferroptosis remains unclear. This study seeks to investigate the potential influence of antibiotics on ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. Here, we report a previously unrecognized role of ciprofloxacin in inhibiting ferroptosis in human PDAC cells. Mechanistically, ciprofloxacin suppresses erastin-induced endoplasmic reticulum (ER) stress through the activating transcription factor 6 (ATF6) and ER to nucleus signaling 1 (ERN1) pathway. Excessive ER stress activation can trigger glutathione peroxidase 4 (GPX4) degradation through autophagic mechanisms. In contrast, ciprofloxacin enhances the protein stability of GPX4, a crucial regulator that suppresses ferroptosis by inhibiting lipid peroxidation. Thus, our study demonstrates the anti-ferroptotic role of ciprofloxacin, highlighting the importance of careful consideration when contemplating the combination of ciprofloxacin with specific ferroptosis inducers in PDAC patients.