YY
Yuanping Yi
Author with expertise in Organic Solar Cell Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
32
(19% Open Access)
Cited by:
10,346
h-index:
81
/
i10-index:
261
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells

Chao Li et al.May 10, 2021
Molecular design of non-fullerene acceptors is of vital importance for high-efficiency organic solar cells. The branched alkyl chain modification is often regarded as a counter-intuitive approach, as it may introduce an undesirable steric hindrance that reduces charge transport in non-fullerene acceptors. Here we show the design and synthesis of a highly efficient non-fullerene acceptor family by substituting the beta position of the thiophene unit on a Y6-based dithienothiophen[3,2-b]-pyrrolobenzothiadiazole core with branched alkyl chains. It was found that such a modification to a different alkyl chain length could completely change the molecular packing behaviour of non-fullerene acceptors, leading to improved structural order and charge transport in thin films. An unprecedented efficiency of 18.32% (certified value of 17.9%) with a fill factor of 81.5% is achieved for single-junction organic solar cells. This work reveals the importance of the branched alkyl chain topology in tuning the molecular packing and blend morphology, which leads to improved organic photovoltaic performance. Molecular design of acceptor and donor molecules has enabled major progress in organic photovoltaics. Li et al. show that branched alkyl chains in non-fullerene acceptors allow favourable morphology in the active layer, enabling a certified device efficiency of 17.9%.
0

Toward Quantitative Prediction of Molecular Fluorescence Quantum Efficiency: Role of Duschinsky Rotation

Qian Peng et al.Jul 10, 2007
It is a highly desirable but difficult task to predict the molecular fluorescence quantum efficiency from first principles. The molecule in the excited state can undergo spontaneous radiation, conversion of electronic energy to nuclear motion, or chemical reaction. For relatively large molecules, it is impossible to obtain the full potential energy surfaces for the ground state and the excited states to study the excited-state dynamics. We show that, under harmonic approximation by considering the Duschinsky rotation effect, the molecular fluorescence properties can be quantitatively calculated from first principles coupled with our correlation function formalism for the internal conversion. In particular, we have explained the peculiar fluorescence behaviors of two isomeric compounds, cis,cis-1,2,3,4-tetraphenyl-1,3-butadiene and 1,1,4,4-tetraphenyl-butadiene, the former being nonemissive in solution and strongly emissive in aggregation or at low temperature, and the latter being strongly emissive in solution. The roles of low-frequency phenyl ring twist motions and their Duschinsky mode mixings are found to be crucial, especially to reveal the temperature dependence. As an independent check, we take a look at the well-established photophysics of 1,4-diphenylbutadiene for its three different conformers. Both the calculated radiative and nonradiative rates are in excellent agreement with the available experimental measurements.
1

Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two‐in‐One Strategy

Feng Liu et al.May 28, 2021
Abstract The trade‐off between the open‐circuit voltage ( V oc ) and short‐circuit current density ( J sc ) has become the core of current organic photovoltaic research, and realizing the minimum energy offsets that can guarantee effective charge generation is strongly desired for high‐performance systems. Herein, a high‐performance ternary solar cell with a power conversion efficiency of over 18% using a large‐bandgap polymer donor, PM6, and a small‐bandgap alloy acceptor containing two structurally similar nonfullerene acceptors (Y6 and AQx‐3) is reported. This system can take full advantage of solar irradiation and forms a favorable morphology. By varying the ratio of the two acceptors, delicate regulation of the energy levels of the alloy acceptor is achieved, thereby affecting the charge dynamics in the devices. The optimal ternary device exhibits more efficient hole transfer and exciton separation than the PM6:AQx‐3‐based system and reduced energy loss compared with the PM6:Y6‐based system, contributing to better performance. Such a “two‐in‐one” alloy strategy, which synergizes two highly compatible acceptors, provides a promising path for boosting the photovoltaic performance of devices.
Load More