MD
Mérouane Debbah
Author with expertise in Next Generation 5G Wireless Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
82
(71% Open Access)
Cited by:
36,853
h-index:
111
/
i10-index:
515
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication

Chongwen Huang et al.Jun 19, 2019
The adoption of a Reconfigurable Intelligent Surface (RIS) for downlink multi-user communication from a multi-antenna base station is investigated in this paper. We develop energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements, subject to individual link budget guarantees for the mobile users. This leads to non-convex design optimization problems for which to tackle we propose two computationally affordable approaches, capitalizing on alternating maximization, gradient descent search, and sequential fractional programming. Specifically, one algorithm employs gradient descent for obtaining the RIS phase coefficients, and fractional programming for optimal transmit power allocation. Instead, the second algorithm employs sequential fractional programming for the optimization of the RIS phase shifts. In addition, a realistic power consumption model for RIS-based systems is presented, and the performance of the proposed methods is analyzed in a realistic outdoor environment. In particular, our results show that the proposed RIS-based resource allocation methods are able to provide up to $300\%$ higher energy efficiency, in comparison with the use of regular multi-antenna amplify-and-forward relaying.
0

Wireless Communications Through Reconfigurable Intelligent Surfaces

Ertuğrul Başar et al.Jan 1, 2019
The future of mobile communications looks exciting with the potential new use cases and challenging requirements of future 6th generation (6G) and beyond wireless networks. Since the beginning of the modern era of wireless communications, the propagation medium has been perceived as a randomly behaving entity between the transmitter and the receiver, which degrades the quality of the received signal due to the uncontrollable interactions of the transmitted radio waves with the surrounding objects. The recent advent of reconfigurable intelligent surfaces in wireless communications enables, on the other hand, network operators to control the scattering, reflection, and refraction characteristics of the radio waves, by overcoming the negative effects of natural wireless propagation. Recent results have revealed that reconfigurable intelligent surfaces can effectively control the wavefront, e.g., the phase, amplitude, frequency, and even polarization, of the impinging signals without the need of complex decoding, encoding, and radio frequency processing operations. Motivated by the potential of this emerging technology, the present article is aimed to provide the readers with a detailed overview and historical perspective on state-of-the-art solutions, and to elaborate on the fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks. This article also explores theoretical performance limits of reconfigurable intelligent surface-assisted communication systems using mathematical techniques and elaborates on the potential use cases of intelligent surfaces in 6G and beyond wireless networks.
0

Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need?

Jakob Hoydis et al.Jan 18, 2013
We consider the uplink (UL) and downlink (DL) of non-cooperative multi-cellular time-division duplexing (TDD) systems, assuming that the number N of antennas per base station (BS) and the number K of user terminals (UTs) per cell are large. Our system model accounts for channel estimation, pilot contamination, and an arbitrary path loss and antenna correlation for each link. We derive approximations of achievable rates with several linear precoders and detectors which are proven to be asymptotically tight, but accurate for realistic system dimensions, as shown by simulations. It is known from previous work assuming uncorrelated channels, that as N→∞ while K is fixed, the system performance is limited by pilot contamination, the simplest precoders/detectors, i.e., eigenbeamforming (BF) and matched filter (MF), are optimal, and the transmit power can be made arbitrarily small. We analyze to which extent these conclusions hold in the more realistic setting where N is not extremely large compared to K. In particular, we derive how many antennas per UT are needed to achieve η% of the ultimate performance limit with infinitely many antennas and how many more antennas are needed with MF and BF to achieve the performance of minimum mean-square error (MMSE) detection and regularized zero-forcing (RZF), respectively.
0

A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems

Mohammad Mozaffari et al.Jan 1, 2019
The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as 3D deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools, such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.
0
Citation2,315
0
Save
0

Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead

Marco Renzo et al.Jul 14, 2020
Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology for application to wireless communications. RISs can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength. Compared with other transmission technologies, e.g., phased arrays, multi-antenna transmitters, and relays, RISs require the largest number of scattering elements, but each of them needs to be backed by the fewest and least costly components. Also, no power amplifiers are usually needed. For these reasons, RISs constitute a promising software-defined architecture that can be realized at reduced cost, size, weight, and power (C-SWaP design), and are regarded as an enabling technology for realizing the emerging concept of smart radio environments (SREs). In this paper, we (i) introduce the emerging research field of RIS-empowered SREs; (ii) overview the most suitable applications of RISs in wireless networks; (iii) present an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs; (iv) provide a comprehensive overview of the current state of research; and (v) discuss the most important research issues to tackle. Owing to the interdisciplinary essence of RIS-empowered SREs, finally, we put forth the need of reconciling and reuniting C. E. Shannon's mathematical theory of communication with G. Green's and J. C. Maxwell's mathematical theories of electromagnetism for appropriately modeling, analyzing, optimizing, and deploying future wireless networks empowered by RISs.
0

Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come

Marco Renzo et al.May 23, 2019
Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms.
0

Living on the edge: The role of proactive caching in 5G wireless networks

Ejder Baştuǧ et al.Aug 1, 2014
This article explores one of the key enablers of beyond 4G wireless networks leveraging small cell network deployments, proactive caching. Endowed with predictive capabilities and harnessing recent developments in storage, context awareness, and social networks, peak traffic demands can be substantially reduced by proactively serving predictable user demands via caching at base stations and users' devices. In order to show the effectiveness of proactive caching, we examine two case studies that exploit the spatial and social structure of the network, where proactive caching plays a crucial role. First, in order to alleviate backhaul congestion, we propose a mechanism whereby files are proactively cached during off-peak periods based on file popularity and correlations among user and file patterns. Second, leveraging social networks and D2D communications, we propose a procedure that exploits the social structure of the network by predicting the set of influential users to (proactively) cache strategic contents and disseminate them to their social ties via D2D communications. Exploiting this proactive caching paradigm, numerical results show that important gains can be obtained for each case study, with backhaul savings and a higher ratio of satisfied users of up to 22 and 26 percent, respectively. Higher gains can be further obtained by increasing the storage capability at the network edge.
0

Coalitional game theory for communication networks

Walid Saad et al.Sep 1, 2009
Game theoretical techniques have recently become prevalent in many engineering applications, notably in communications. With the emergence of cooperation as a new communication paradigm, and the need for self-organizing, decentralized, and autonomic networks, it has become imperative to seek suitable game theoretical tools that allow to analyze and study the behavior and interactions of the nodes in future communication networks. In this context, this tutorial introduces the concepts of cooperative game theory, namely coalitional games, and their potential applications in communication and wireless networks. For this purpose, we classify coalitional games into three categories: canonical coalitional games, coalition formation games, and coalitional graph games. This new classification represents an application-oriented approach for understanding and analyzing coalitional games. For each class of coalitional games, we present the fundamental components, introduce the key properties, mathematical techniques, solution concepts, and describe the methodologies for applying these games in several applications drawn from the state-of-theart research in communications. In a nutshell, this article constitutes a unified treatment of coalitional game theory tailored to the demands of communications and network engineers.
Load More