GC
Gaspard Cretenet
Author with expertise in Metabolic Reprogramming in Cancer Biology
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
733
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation

Dorota Klysz et al.Sep 29, 2015
+16
C
P
D
T cell activation requires that the cell meet increased energetic and biosynthetic demands. We showed that exogenous nutrient availability regulated the differentiation of naïve CD4(+) T cells into distinct subsets. Activation of naïve CD4(+) T cells under conditions of glutamine deprivation resulted in their differentiation into Foxp3(+) (forkhead box P3-positive) regulatory T (Treg) cells, which had suppressor function in vivo. Moreover, glutamine-deprived CD4(+) T cells that were activated in the presence of cytokines that normally induce the generation of T helper 1 (TH1) cells instead differentiated into Foxp3(+) Treg cells. We found that α-ketoglutarate (αKG), the glutamine-derived metabolite that enters into the mitochondrial citric acid cycle, acted as a metabolic regulator of CD4(+) T cell differentiation. Activation of glutamine-deprived naïve CD4(+) T cells in the presence of a cell-permeable αKG analog increased the expression of the gene encoding the TH1 cell-associated transcription factor Tbet and resulted in their differentiation into TH1 cells, concomitant with stimulation of mammalian target of rapamycin complex 1 (mTORC1) signaling. Together, these data suggest that a decrease in the intracellular amount of αKG, caused by the limited availability of extracellular glutamine, shifts the balance between the generation of TH1 and Treg cells toward that of a Treg phenotype.
0

Glucose and Glutamine Metabolism Regulate Human Hematopoietic Stem Cell Lineage Specification

Leal Oburoglu et al.Aug 1, 2014
+17
V
S
L

Summary

 The metabolic state of quiescent hematopoietic stem cells (HSCs) is an important regulator of self-renewal, but it is unclear whether or how metabolic parameters contribute to HSC lineage specification and commitment. Here, we show that the commitment of human and murine HSCs to the erythroid lineage is dependent upon glutamine metabolism. HSCs require the ASCT2 glutamine transporter and active glutamine metabolism for erythroid specification. Blocking this pathway diverts EPO-stimulated HSCs to differentiate into myelomonocytic fates, altering in vivo HSC responses and erythroid commitment under stress conditions such as hemolytic anemia. Mechanistically, erythroid specification of HSCs requires glutamine-dependent de novo nucleotide biosynthesis. Exogenous nucleosides rescue erythroid commitment of human HSCs under conditions of limited glutamine catabolism, and glucose-stimulated nucleotide biosynthesis further enhances erythroid specification. Thus, the availability of glutamine and glucose to provide fuel for nucleotide biosynthesis regulates HSC lineage commitment under conditions of metabolic stress.
0

Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions

Gaspard Cretenet et al.Apr 12, 2016
+7
M
I
G
Abstract CD4 and CD8 T lymphocyte activation requires the generation of sufficient energy to support new biosynthetic demands. Following T cell receptor (TCR) engagement, these requirements are met by an increased glycolysis, due, at least in part, to induction of the Glut1 glucose transporter. As Glut1 is upregulated on tumor cells in response to hypoxia, we assessed whether surface Glut1 levels regulate the antigen responsiveness of human T lymphocytes in both hypoxic and atmospheric oxygen conditions. Notably, Glut1 upregulation in response to TCR stimulation was significantly higher in T lymphocytes activated under hypoxic as compared to atmospheric oxygen conditions. Furthermore, TCR-stimulated human T lymphocytes sorted on the basis of Glut1-Lo and Glut1-Hi profiles maintained distinct characteristics, irrespective of the oxygen tension. While T cells activated in hypoxia divided less than those activated in atmospheric oxygen, Glut1-Hi lymphocytes exhibited increased effector phenotype acquisition, augmented proliferation and an inverted CD4/CD8 ratio in both oxygen conditions. Moreover, Glut1-Hi T lymphocytes exhibited a significantly enhanced ability to produce IFN-γ and this secretion potential was completely dependent on continued glycolysis. Thus, Glut1 surface levels identify human T lymphocytes with distinct effector functions in both hypoxic and atmospheric oxygen tensions.
0
Citation81
0
Save
0

Glucose and Glutamine Metabolism Regulate Human Hematopoietic Stem Cell Lineage Specification

Leal Oburoglu et al.Nov 1, 2014
+18
V
S
L
(Cell Stem Cell 15, 169–184; August 7, 2014) A reader has pointed out that, in Figure 4C and Figure 6G of our originally published manuscript, there is apparent duplication of some of the plots presented. Upon examination of the affected panels and the underlying original data, we discovered that in both instances there is indeed duplication resulting from inclusion of erroneous image files. In Figure 4C, the Gr1/Ter119 flow profile presented for the control nonanemic condition (PHZ−, 2-DG−, DON−) in the lower panel is a duplication of the profile for the PHZ+, 2-DG+, DON− condition, although the indicated gated percentages do correspond to the correct original data. We have corrected the figure by replacing the profile in the control panel with the correct data. In Figure 6G, the histograms presented for CD71 staining in the DON and DON + DMK conditions are inadvertent duplications of the corresponding histograms for CD36, shown immediately below. To correct this figure, we have replaced the indicated panels with the correct data for the CD71 staining. In both figures, all panels other than those specifically highlighted remain the same. These unfortunate oversights in figure assembly do not affect our underlying data or conclusions. We apologize for any confusion that these issues have caused, and we wish to thank the anonymous reader for bringing them to our attention. The corrected figures are presented below and have been replaced in the versions of the manuscript that are available online.Figure 6Glutamine-Dependent Nucleotide Biosynthesis Is a Rate-Limiting Step in EPO-Induced Erythroid Differentiation of Human Hematopoietic ProgenitorsView Large Image Figure ViewerDownload Hi-res image Download (PPT) Glucose and Glutamine Metabolism Regulate Human Hematopoietic Stem Cell Lineage SpecificationOburoglu et al.Cell Stem CellJune 19, 2014In BriefMetabolite availability regulates stem cell differentiation, influencing lineage decisions during periods of in vivo metabolic stress. Oburoglu et al. show that erythroid differentiation requires glucose and glutamine metabolism and that HSCs are diverted to a myelomonocytic fate under restrictive conditions. Full-Text PDF Open Archive
0
Citation3
0
Save