AH
Ahmed Hussein
Author with expertise in Heat Transfer Enhancement in Nanofluids
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(33% Open Access)
Cited by:
667
h-index:
49
/
i10-index:
126
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Applications of nanotechnology in renewable energies—A comprehensive overview and understanding

Ahmed HusseinNov 5, 2014
One of the great technological challenges in 21st century is the development of renewable energy technologies due to serious problems related with the production and use of energy. A new promising area of research grows rapidly which is called Nanotechnologies are considered nowadays one of the most recommended choices to solve this problem. This review aims to introduce several significant applications of nanotechnology in renewable energy systems. Papers reviewed including theoretical and experimental works related with nanotechnology applications in solar, hydrogen, wind, biomass, geothermal and tidal energies. A lot of literature are reviewed and summarized carefully in a useful tables to give a panoramic overview about the role of nanotechnology in improving the various sources of renewable energies. We think that this paper can be considered as an important bridge between nanotechnology and all available kinds of renewable energies. From the other side, further researches are required to study the effect of nanotechnology to enhance the renewable energy industry especially in geothermal, wind and tidal energies, since the available papers in these fields are limited.
0
Citation415
0
Save
0

Hydrogen energy systems: Technologies, trends, and future prospects

Abdellatif Sadeq et al.May 29, 2024
This review critically examines hydrogen energy systems, highlighting their capacity to transform the global energy framework and mitigate climate change. Hydrogen showcases a high energy density of 120 MJ/kg, providing a robust alternative to fossil fuels. Adoption at scale could decrease global CO2 emissions by up to 830 million tonnes annually. Despite its potential, the expansion of hydrogen technology is curtailed by the inefficiency of current electrolysis methods and high production costs. Presently, electrolysis efficiencies range between 60 % and 80 %, with hydrogen production costs around $5 per kilogram. Strategic advancements are necessary to reduce these costs below $2 per kilogram and push efficiencies above 80 %. Additionally, hydrogen storage poses its own challenges, requiring conditions of up to 700 bar or temperatures below −253 °C. These storage conditions necessitate the development of advanced materials and infrastructure improvements. The findings of this study emphasize the need for comprehensive strategic planning and interdisciplinary efforts to maximize hydrogen's role as a sustainable energy source. Enhancing the economic viability and market integration of hydrogen will depend critically on overcoming these technological and infrastructural challenges, supported by robust regulatory frameworks. This comprehensive approach will ensure that hydrogen energy can significantly contribute to a sustainable and low-carbon future.
0
Paper
Citation9
0
Save
0

Effect of different configurations of hybrid nano additives blended with biodiesel on CI engine performance and emissions

M.S. Gad et al.Aug 22, 2024
The use of nano additives to improve the cold properties of biodiesel is encouraged by its drawbacks and incompatibility in cold climate. Waste cooking oil (WCO) was transesterified to create biodiesel. A 20% by volume was used for combination of diesel and methyl ester. Current study aims to evaluate diesel engine emissions and performance. TiO2, alumina, and hybrid TiO2 + Al2O3 nanoparticles are added to WCO biodiesel mixture at 25 mg/liter. When B20 combined with nano materials such as TiO2, Al2O3, and hybrid nano, the highest declines in brake specific fuel consumption were 4, 6, and 11%, respectively. As compared to biodiesel blend, the largest gains in thermal efficiency were 4.5, 6.5, and 12.5%, respectively, at maximum engine output power. Introduction of TiO2, Al2O3, and hybrid nano particles to B20 at 100% load resulted in the highest decreases in HC concentrations up to 7, 13, and 20%, and the biggest reductions in CO emissions, up to 6, 12, and 16%. Largest increases in NOx concentrations at full load were about 7, 15, and 23% for B20 + 25TiO2, B20 + 25 Al2O3, and B20 + 25TiO2 + 25 Al2O3, respectively. Up to 8, 15, and 21% less smoke was released, correspondingly, which were the largest reductions. Recommended dosage of 25 ppm alumina and 25 ppm TiO2 achieved noticeable improvements in diesel engine performance, combustion and emissions about B20.