Abstract Immunoglobulins (IGs), critical components of the human immune system, are composed of heavy and light protein chains encoded at three genomic loci. The IG Kappa (IGK) chain locus consists of two large, inverted segmental duplications. The complexity of IG loci has hindered effective use of standard high- throughput methods for characterizing genetic variation within these regions. To overcome these limitations, we leverage long-read sequencing to create haplotype-resolved IGK assemblies in an ancestrally diverse cohort (n=36), representing the first comprehensive description of IGK haplotype variation at population-scale. We identify extensive locus polymorphism, including novel single nucleotide variants (SNVs) and a common novel ∼24.7 Kbp structural variant harboring a functional IGKV gene. Among 47 functional IGKV genes, we identify 141 alleles, 64 (45.4%) of which were not previously curated. We report inter-population differences in allele frequencies for 14 of the IGKV genes, including alleles unique to specific populations within this dataset. Finally, we identify haplotypes carrying signatures of gene conversion that associate with enrichment of SNVs in the IGK distal region. These data provide a critical resource of curated genomic reference information from diverse ancestries, laying a foundation for advancing our understanding of population-level genetic variation in the IGK locus.