YY
Yuhao Yang
Author with expertise in Natural Language Processing
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
261
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Knowledge Graph Contrastive Learning for Recommendation

Yuhao Yang et al.Jul 6, 2022
Knowledge Graphs (KGs) have been utilized as useful side information to improve recommendation quality. In those recommender systems, knowledge graph information often contains fruitful facts and inherent semantic relatedness among items. However, the success of such methods relies on the high quality knowledge graphs, and may not learn quality representations with two challenges: i) The long-tail distribution of entities results in sparse supervision signals for KG-enhanced item representation; ii) Real-world knowledge graphs are often noisy and contain topic-irrelevant connections between items and entities. Such KG sparsity and noise make the item-entity dependent relations deviate from reflecting their true characteristics, which significantly amplifies the noise effect and hinders the accurate representation of user's preference. To fill this research gap, we design a general Knowledge Graph Contrastive Learning framework (KGCL) that alleviates the information noise for knowledge graph-enhanced recommender systems. Specifically, we propose a knowledge graph augmentation schema to suppress KG noise in information aggregation, and derive more robust knowledge-aware representations for items. In addition, we exploit additional supervision signals from the KG augmentation process to guide a cross-view contrastive learning paradigm, giving a greater role to unbiased user-item interactions in gradient descent and further suppressing the noise. Extensive experiments on three public datasets demonstrate the consistent superiority of our KGCL over state-of-the-art techniques. KGCL also achieves strong performance in recommendation scenarios with sparse user-item interactions, long-tail and noisy KG entities. Our implementation codes are available at https://github.com/yuh-yang/KGCL-SIGIR22
0

HiGPT: Heterogeneous Graph Language Model

Jiabin Tang et al.Aug 24, 2024
Heterogeneous graph learning aims to capture complex relationships and diverse relational semantics among entities in a heterogeneous graph to obtain meaningful representations for nodes and edges. Recent advancements in heterogeneous graph neural networks (HGNNs) have achieved state-of-the-art performance by considering relation heterogeneity and using specialized message functions and aggregation rules. However, existing frameworks for heterogeneous graph learning have limitations in generalizing across diverse heterogeneous graph datasets. Most of these frameworks follow the "pre-train" and "fine-tune" paradigm on the same dataset, which restricts their capacity to adapt to new and unseen data. This raises the question: "Can we generalize heterogeneous graph models to be well-adapted to diverse downstream learning tasks with distribution shifts in both node token sets and relation type heterogeneity?" To tackle those challenges, we propose HiGPT, a general large graph model with Heterogeneous graph instruction-tuning paradigm. Our framework enables learning from arbitrary heterogeneous graphs without the need for any fine-tuning process from downstream datasets. To handle distribution shifts in heterogeneity, we introduce an in-context heterogeneous graph tokenizer that captures semantic relationships in different heterogeneous graphs, facilitating model adaptation. We incorporate a large corpus of heterogeneity-aware graph instructions into our HiGPT, enabling the model to effectively comprehend complex relation heterogeneity and distinguish between various types of graph tokens. Furthermore, we introduce the Mixture-of-Thought (MoT) instruction augmentation paradigm to mitigate data scarcity by generating diverse and informative instructions. Through comprehensive evaluations conducted in various settings, our proposed framework demonstrates exceptional performance in terms of generalization performance, surpassing current leading benchmarks. We make our model implementation openly available, along with comprehensive details at: https://github.com/HKUDS/HiGPT.