HL
Hong Liu
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
74
(31% Open Access)
Cited by:
18,831
h-index:
122
/
i10-index:
1094
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Self-Assembled Copper–Amino Acid Nanoparticles for in Situ Glutathione “AND” H2O2 Sequentially Triggered Chemodynamic Therapy

Baojin Ma et al.Dec 13, 2018
Nanoformulations that can respond to the specific tumor microenvironment (TME), such as a weakly acidic pH, low oxygen, and high glutathione (GSH), show promise for killing cancer cells with minimal invasiveness and high specificity. In this study, we demonstrate self-assembled copper–amino acid mercaptide nanoparticles (Cu-Cys NPs) for in situ glutathione-activated and H2O2-reinforced chemodynamic therapy for drug-resistant breast cancer. After endocytosis into tumor cells, the Cu-Cys NPs could first react with local GSH, induce GSH depletion, and reduce Cu2+ to Cu+. Subsequently, the generated Cu+ would react with local H2O2 to generate toxic hydroxyl radicals (·OH) via a Fenton-like reaction, which has a fast reaction rate in the weakly acidic TME, that are responsible for tumor-cell apoptosis. Due to the high GSH and H2O2 concentration in tumor cells, which sequentially triggers the redox reactions, Cu-Cys NPs exhibited relatively high cytotoxicity to cancer cells, whereas normal cells were left alive. The in vivo results also proved that Cu-Cys NPs efficiently inhibited drug-resistant breast cancer without causing obvious systemic toxicity. As a novel copper mercaptide nanoformulation responsive to the TME, these Cu-Cys NPs may have great potential in chemodynamic cancer therapy.
0

Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells

Shaoan Cheng et al.Nov 23, 2005
Cathode catalysts and binders were examined for their effect on power densities in single chamber, air-cathode, microbial fuel cells (MFCs). Chronopotentiometry tests indicated thatthe cathode potential was only slightly reduced (20-40 mV) when Pt loadings were decreased from 2 to 0.1 mg cm(-2), and that Nafion performed better as a Pt binder than poly(tetrafluoroethylene) (PTFE). Replacing the precious-metal Pt catalyst (0.5 mg cm(-2); Nafion binder) with a cobalt material (cobalt tetramethylphenylporphyrin, CoTMPP) produced slightly improved cathode performance above 0.6 mA cm(-2), but reduced performance (<40 mV) at lower current densities. MFC fed batch tests conducted for 35 cycles (31 days) using glucose showed that replacement of the Nafion binder used for the cathode catalyst (0.5 mg of Pt cm(-2)) with PTFE reduced the maximum power densities (from 400 +/- 10 to 480 +/- 20 mW m(-2) to 331 +/- 3 to 360 +/- 10 mW m(-2)). When the Pt loading on cathode was reduced to 0.1 mg cm(-2), the maximum power density of MFC was reduced on average by 19% (379 +/- 5 to 301 +/- 15 mW m(-2); Nafion binder). Power densities with CoTMPP were only 12% (369 +/- 8 mW m(-2)) lower over 25 cycles than those obtained with Pt (0.5 mg cm(-2); Nafion binder). Power densities obtained using with catalysts on the cathodes were approximately 4 times more than those obtained using a plain carbon electrode. These results demonstrate that cathodes used in MFCs can contain very little Pt, and that the Pt can even be replaced with a non-precious metal catalyst such as a CoTMPP with only slightly reduced performance.
0

Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors

Pin Hao et al.Apr 11, 2015
Graphene-based nitrogen self-doped hierarchical porous carbon aerogels were synthesized for supercapacitor electrode application by using chitosan as a raw material through a carefully controlled aerogel formation–carbonization–activation process. The as-synthesized N-doped graphene-based carbon aerogels contained both macropores and mesopores from the aerogel preparation and carbonization process, and micropores from the chemical activation, confirmed by TEM, SEM, BET, etc. Because chitosan is a nitrogen-containing renewable biopolymer, the carbon aerogel derived from chitosan in this work was N-self-doped. The carbonized carbon aerogel was composed of a graphene framework and amorphous carbon, and the ratio between these two components was controlled by the activation temperature. With an increase in activation temperature, the amorphous carbon was etched away gradually, and a stable graphene portion remained to form a framework. Accordingly, the performance of the graphene-based carbon aerogel as a supercapacitor varied with increasing activation temperature. Electrochemical investigation measurements showed that the N-doped graphene-based hierarchical porous carbon aerogel represents a good electrode candidate for construction of a solid symmetric supercapacitor, which displays a high specific capacitance of about 197 F g−1 at a current density of 0.2 A g−1. In addition, the solid state supercapacitor displayed excellent cyclability with a capacitance retention of about 92.1% over 10,000 cycles. The excellent energy storage ability of the chitosan-derived hierarchical graphene-based carbon aerogels is ascribed to the high conductivity of the graphene framework with nitrogen doping and the high storage ability of amorphous carbon with variable pore size and distribution.
Load More