LG
Laura Gagliardi
Author with expertise in Chemistry and Applications of Metal-Organic Frameworks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(69% Open Access)
Cited by:
10,542
h-index:
91
/
i10-index:
441
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table

Francesco Aquilante et al.Nov 12, 2015
In this report, we summarize and describe the recent unique updates and additions to the M olcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas–Kroll–Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC‐PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large‐scale parallel multireference configuration interaction including analytic gradients via the interface to the C olumbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package C obramm . Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization. © 2015 Wiley Periodicals, Inc.
0

Cooperative insertion of CO2 in diamine-appended metal-organic frameworks

Thomas MacDonald et al.Mar 1, 2015
The process of carbon capture and sequestration has been proposed as a method of mitigating the build-up of greenhouse gases in the atmosphere. If implemented, the cost of electricity generated by a fossil fuel-burning power plant would rise substantially, owing to the expense of removing CO2 from the effluent stream. There is therefore an urgent need for more efficient gas separation technologies, such as those potentially offered by advanced solid adsorbents. Here we show that diamine-appended metal-organic frameworks can behave as ‘phase-change’ adsorbents, with unusual step-shaped CO2 adsorption isotherms that shift markedly with temperature. Results from spectroscopic, diffraction and computational studies show that the origin of the sharp adsorption step is an unprecedented cooperative process in which, above a metal-dependent threshold pressure, CO2 molecules insert into metal-amine bonds, inducing a reorganization of the amines into well-ordered chains of ammonium carbamate. As a consequence, large CO2 separation capacities can be achieved with small temperature swings, and regeneration energies appreciably lower than achievable with state-of-the-art aqueous amine solutions become feasible. The results provide a mechanistic framework for designing highly efficient adsorbents for removing CO2 from various gas mixtures, and yield insights into the conservation of Mg2+ within the ribulose-1,5-bisphosphate carboxylase/oxygenase family of enzymes. A cooperative insertion mechanism for CO2 adsorption is shown to generate highly efficient adsorbents for carbon capture applications. Advanced solid adsorbents are being investigated as potential agents for efficient gas separation technologies that could help make carbon capture technologies more economical. This paper probes the mechanism of carbon dioxide adsorption of a previously reported diamine-appended metal-organic framework. This material demonstrates unusual and potentially practically useful adsorption properties. The authors find that CO2 adsorbs through insertion into the highly stable metal-amine bonds of the metal-organic framework. As a consequence of the homogenous and perfect spacing of amines, as dictated by the framework's topology, the insertion of a single CO2 molecule induces neighbouring sites to also adsorb CO2 in an unprecedented chain reaction process.
0

OpenMolcas: From Source Code to Insight

Ignacio Galván et al.Sep 11, 2019
In this Article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multiconfigurational wave function and density functional theory models. Some of these implementations include an array of additional options and functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics, and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the Article describes features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism, and properties. Finally, the paper describes a number of built-in and add-on features to support the OpenMolcas platform with postcalculation analysis and visualization, a multiscale simulation option using frozen-density embedding theory, and new electronic and muonic basis sets.
0

The restricted active space followed by second-order perturbation theory method: Theory and application to the study of CuO2 and Cu2O2 systems

Per‐Åke Malmqvist et al.May 28, 2008
A multireference second-order perturbation theory using a restricted active space self-consistent field wave function as reference (RASPT2/RASSCF) is described. This model is particularly effective for cases where a chemical system requires a balanced orbital active space that is too large to be addressed by the complete active space self-consistent field model with or without second-order perturbation theory (CASPT2 or CASSCF, respectively). Rather than permitting all possible electronic configurations of the electrons in the active space to appear in the reference wave function, certain orbitals are sequestered into two subspaces that permit a maximum number of occupations or holes, respectively, in any given configuration, thereby reducing the total number of possible configurations. Subsequent second-order perturbation theory captures additional dynamical correlation effects. Applications of the theory to the electronic structure of complexes involved in the activation of molecular oxygen by mono- and binuclear copper complexes are presented. In the mononuclear case, RASPT2 and CASPT2 provide very similar results. In the binuclear cases, however, only RASPT2 proves quantitatively useful, owing to the very large size of the necessary active space.
0

On the Mechanism of the cis−trans Isomerization in the Lowest Electronic States of Azobenzene: S0, S1, and T1

Alessandro Cembran et al.Feb 21, 2004
In this paper, we identify the most efficient decay and isomerization route of the S(1), T(1), and S(0) states of azobenzene. By use of quantum chemical methods, we have searched for the transition states (TS) on the S(1) potential energy surface and for the S(0)/S(1) conical intersections (CIs) that are closer to the minimum energy path on the S(1). We found only one TS, at 60 degrees of CNNC torsion from the E isomer, which requires an activation energy of only 2 kcal/mol. The lowest energy CIs, lying also 2 kcal/mol above the S(1) minimum, were found on the torsion pathway for CNNC angles in the range 95-90 degrees. The lowest CI along the inversion path was found ca. 25 kcal/mol higher than the S(1) minimum and was characterized by a highly asymmetric molecular structure with one NNC angle of 174 degrees. These results indicate that the S(1) state decay involves mainly the torsion route and that the inversion mechanism may play a role only if the molecule is excited with an excess energy of at least 25 kcal/mol with respect to the S(1) minimum of the E isomer. We have calculated the spin-orbit couplings between S(0) and T(1) at several geometries along the CNNC torsion coordinate. These spin-orbit couplings were about 20-30 cm(-)(1) for all the geometries considered. Since the potential energy curves of S(0) and T(1) cross in the region of twisted CNNC angle, these couplings are large enough to ensure that the T(1) lifetime is very short ( approximately 10 ps) and that thermal isomerization can proceed via the nonadiabatic torsion route involving the S(0)-T(1)-S(0) crossing with preexponential factor and activation energy in agreement with the values obtained from kinetic measures.
0

Oxidation of ethane to ethanol by N2O in a metal–organic framework with coordinatively unsaturated iron(II) sites

Dianne Xiao et al.May 18, 2014
Enzymatic haem and non-haem high-valent iron–oxo species are known to activate strong C–H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron–oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)–oxo compounds. In particular, although nature's non-haem iron(IV)–oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal–organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal–organic framework Fe2(dobdc) (dobdc4− = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C–H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)–oxo species. Selective functionalization of light hydrocarbons is a challenging but desirable transformation. Now a family of Fe(II)-based metal–organic frameworks has been shown to convert ethane into ethanol and acetaldehyde using N2O. Electronic structure calculations indicate that the active Fe oxidant in the MOF is a high-spin S = 2 iron(II)–oxo species.
0

Multiconfiguration Pair-Density Functional Theory

Giovanni Manni et al.Jul 21, 2014
We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.
Load More