SB
Salmaan Baxamusa
Author with expertise in Laser-Plasma Interactions and Particle Acceleration
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
311
h-index:
27
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Modeling ablator defects as a source of mix in high-performance implosions at the National Ignition Facility

D. Clark et al.Jun 1, 2024
Recent indirect drive inertial confinement fusion implosions on the National Ignition Facility (NIF) [Spaeth et al., Fusion Sci. Technol. 69, 25 (2016)] have crossed the threshold of ignition. However, performance has been variable due to several factors. One of the leading sources of variability is the quality of the high-density carbon (HDC) shells used as ablators in these experiments. In particular, these shells can have a number of defects that have been found to correlate with the appearance of ablator mix into the hot spot and a degradation in nuclear yield. These defects include pits on the ablator surface, voids in the ablator bulk, high-Z debris from the Hohlraum wall that adheres to the capsule surface, and finally the inherent granular micro-structure of the crystalline HDC itself. This paper summarizes high-resolution modeling of each of these mix sources in two recent high-performance NIF implosion experiments. The simulated impact from a range of individual capsule defects is found to be broadly consistent with the trends seen in experiment, lending credence to the modeling results and the details of the mixing process that they reveal. Interestingly, modeling of the micro-structure inherent to HDC shows that this perturbation source results in considerable mixing of the deuterium–tritium fuel with ablator material during the implosion. The reduction in fuel compression from this mix results in an approximately factor of two reduction in neutron yield in current implosions and emphasizes the importance of mitigating this significant performance degradation.
0

Design of first experiment to achieve fusion target gain &gt; 1

A. Kritcher et al.Jul 1, 2024
A decades-long quest to achieve fusion energy target gain and ignition in a controlled laboratory experiment, dating back to 1962, has been realized at the National Ignition Facility (NIF) on December 5, 2022 [Abu-Shawareb et al., Phys. Rev. Lett. 132, 065102 (2024)] where an imploded pellet of deuterium and tritium (DT) fuel generated more fusion energy (3.15 MJ) than laser energy incident on the target (2.05 MJ). In these experiments, laser beams incident on the inside of a cylindrical can (Hohlraum) generate an intense ∼3 × 106 million degree x-ray radiation bath that is used to spherically implode ∼2 mm diameter pellets containing frozen deuterium and tritium. The maximum fusion energy produced in this configuration to date is 3.88 MJ using 2.05 MJ of incident laser energy and 5.2 MJ using 2.2 MJ of incident laser energy, producing a new record target gain of ∼2.4×. This paper describes the physics (target and laser) design of this platform and follow-on experiments that show increased performance. We show robust megajoule fusion energy output using this design as well as explore design modification using radiation hydrodynamic simulations benchmarked against experimental data, which can further improve the performance of this platform.
0
Citation1
0
Save