JT
Jiaxiang Tang
Author with expertise in Motion Synthesis and Control Techniques
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
18
h-index:
6
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TeCH: Text-Guided Reconstruction of Lifelike Clothed Humans

Yangyi Huang et al.Mar 18, 2024
Despite recent research advancements in reconstructing clothed humans from a single image, accurately restoring the "unseen regions" with high-level details remains an unsolved challenge that lacks attention. Existing methods often generate overly smooth back-side surfaces with a blurry texture. But how to effectively capture all visual attributes of an individual from a single image, which are sufficient to reconstruct unseen areas (e.g. the back view)? Motivated by the power of foundation models, TeCH reconstructs the 3D human by leveraging 1) descriptive text prompts (e.g. garments, colors, hairstyles) which are automatically generated via a garment parsing model and Visual Question Answering (VQA), 2) a personalized fine-tuned Text-to-Image diffusion model (T2I) which learns the "indescribable" appearance. To represent high-resolution 3D clothed humans at an affordable cost, we propose a hybrid 3D representation based on DMTet, which consists of an explicit body shape grid and an implicit distance field. Guided by the descriptive prompts + personalized T2I diffusion model, the geometry and texture of the 3D humans are optimized through multi-view Score Distillation Sampling (SDS) and reconstruction losses based on the original observation. TeCH produces high-fidelity 3D clothed humans with consistent & delicate texture, and detailed full-body geometry. Quantitative and qualitative experiments demonstrate that TeCH outperforms the state-of-the-art methods in terms of reconstruction accuracy and rendering quality. The code will be publicly available for research purposes at huangyangyi.github.io/TeCH
0

TADA! Text to Animatable Digital Avatars

Tingting Liao et al.Mar 18, 2024
We introduce TADA, a simple-yet-effective approach that takes textual descriptions and produces expressive 3D avatars with high-quality geometry and lifelike textures, that can be animated and rendered with traditional graphics pipelines. Existing text-based character generation methods are limited in terms of geometry and texture quality, and cannot be realistically animated due to the misalignment between the geometry and the texture, particularly in the face region. To address these limitations, TADA leverages the synergy of a 2D diffusion model and a parametric body model. Specifically, we derive a high-resolution upsampled version of SMPL-X with a displacement layer and a texture map, and use hierarchical rendering with score distillation sampling (SDS) to create high-quality, detailed, holistic 3D avatars from text. To ensure alignment between the geometry and texture, we render normals and RGB images of the generated character and exploit their latent embeddings during the SDS optimization process. We further drive the character's face with multiple expressions during optimization, ensuring that its semantics remain consistent with the original SMPL-X model. Both qualitative and quantitative evaluations show that TADA significantly surpasses existing approaches. TADA enables large-scale creation of digital characters ready for animation and rendering, while also enabling text-guided editing. The code is public for research purposes at tada.is.tue.mpg.de