ZW
Zihu Wang
Author with expertise in Wearable Nanogenerator Technology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
3
h-index:
8
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An artificial intelligence-assisted microfluidic colorimetric wearable sensor system for monitoring of key tear biomarkers

Zihu Wang et al.Jun 13, 2024
Abstract The precise, simultaneous, and rapid detection of essential biomarkers in human tears is imperative for monitoring both ocular and systemic health. The utilization of a wearable colorimetric biochemical sensor exhibits potential in achieving swift and concurrent detection of pivotal biomarkers in tears. Nevertheless, challenges arise in the collection, interpretation, and sharing of data from the colorimetric sensor, thereby restricting the practical implementation of this technology. To overcome these challenges, this research introduces an artificial intelligence-assisted wearable microfluidic colorimetric sensor system (AI-WMCS) for rapid, non-invasive, and simultaneous detection of key biomarkers in human tears, including vitamin C, H + (pH), Ca 2+ , and proteins. The sensor consists of a flexible microfluidic epidermal patch that collects tears and facilitates the colorimetric reaction, and a deep-learning neural network-based cloud server data analysis system (CSDAS) embedded in a smartphone enabling color data acquisition, interpretation, auto-correction, and display. To enhance accuracy, a well-trained multichannel convolutional recurrent neural network (CNN-GRU) corrects errors in the interpreted concentration data caused by varying pH and color temperature in different measurements. The test set determination coefficients (R 2 ) of 1D-CNN-GRU for predicting pH and 3D-CNN-GRU for predicting the other three biomarkers were as high as 0.998 and 0.994, respectively. This correction significantly improves the accuracy of the predicted concentration, enabling accurate, simultaneous, and quick detection of four critical tear biomarkers using only minute amounts of tears ( ~ 20 μL). This research demonstrates the powerful integration of a flexible microfluidic colorimetric biosensor and deep-learning algorithm, which holds immense potential to revolutionize the fields of health monitoring.
0

Quantitative detection of multi-component chemical gas via MXene-based sensor array driven by triboelectric nanogenerators with CNN-GRU model

Dongyue Wang et al.Jun 6, 2024
Precise identification of multi-component chemical gas poses a significant challenge. In this work, a MXene-based gas sensor array driven by triboelectric nanogenerators (TENGs) was constructed and combined with the neural network model to achieve accurate detection of multi-component chemical gas mixture. The wind-driven TENG array was prepared by Ti3C2Tx MXene and acetate fiber, which was used to powered the gas sensor array. The peak-to-peak value of open-circuit voltage and output power of a single TENG can reach 269 V and 1.2 mW. The gas sensor array was prepared by microelectronic printing and nano-sensing technology. The prepared sensor array exhibited better gas-sensing properties due to the synergistic effect between MXene and metal oxides. The gas-sensing response of MXene/metal oxide nanocomposites is 6.1-9.3 times better than that of the pure MXene. The MXene-based gas sensor array was constructed by integrating the TENG array with the gas sensor array. By combining the signal processing technology of MXene-based gas sensor array and convolutional neural network-gated recurrent unit (CNN-GRU) neural network mode, the composition identification and concentration prediction in NH3-SO2-NO2 three-component chemical gas mixtures were successfully realized with a mean relative error of less than 0.7%, which provides a universal solution for more complex multi-component chemical gas mixture detection.
0

An Artificial Intelligence-Assisted Flexible and Wearable Mechanoluminescent Strain Sensor System

Yan Dong et al.Nov 15, 2024
Abstract The complex wiring, bulky data collection devices, and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices. To tackle these challenges, this work develops an artificial intelligence-assisted, wireless, flexible, and wearable mechanoluminescent strain sensor system (AIFWMLS) by integration of deep learning neural network-based color data processing system (CDPS) with a sandwich-structured flexible mechanoluminescent sensor (SFLC) film. The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication. The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature, which significantly improves the accuracy of the predicted strain. A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition. Moreover, the versatile SFLC film can also serve as a encryption device. The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the “color to strain value” bottleneck that hinders the practical application of flexible colorimetric strain sensors, which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets.