Abstract The pharynx is an endoderm innovation in deuterostome ancestors, the vertebrate descendent structure of which is a pharyngeal developmental organizer involving multi-germ layer and organ derivatives. However, the evolutionary origination of complicated pharynx organs in vertebrates is still largely unknown. Endostyle, a transitional pharyngeal organ exclusively in basal chordates provides an opportunity to reveal the origin of pharyngeal organs. Here, utilizing cutting-edged Stereo-seq and single-cell RNA-seq, we constructed the first spatially-resolved single-cell atlas in the endostyle of urochordate ascidian Styela clava , where the spatial location of Stereo-seq and high capture efficiency of single-cell RNA-seq complement each other and identified 23 highly differentiated cell types. We identified a previously overlooked hemolymphoid region (HLR), which harbors immune and blood cell clusters with enriched stemness capacities, illuminating a mixed rudiment and stem-cell niches for the blood and lymphoid system. More excitingly, we discovered a mechanical-sensitive hair cell candidate in zone 3 homologous to vertebrate acoustico-lateralis system, which was supported by the expression of in situ hybridization-verified inner ear-specific markers, including PTPRQ , USH2A , WHRN , and ADGRV1 , ultracellular structure evidence and cross-species comparison. These results thoroughly renewed the comprehension of the basal-chordate pharynx and provides expressional evidence for multiplexed pharyngeal organ evolution.