AL
Anders Lyngfelt
Author with expertise in Chemical-Looping Technologies
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
19
(37% Open Access)
Cited by:
7,969
h-index:
79
/
i10-index:
230
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion

Anders Lyngfelt et al.May 1, 2001
For combustion with CO2 capture, chemical-looping combustion has the advantage that no energy is lost for the separation of CO2. In chemical-looping combustion oxygen is transferred from the combustion air to the gaseous fuel by means of an oxygen carrier. The fuel and the combustion air are never mixed, and the gases from the oxidation of the fuel, CO2 and H2O, leave the system as a separate stream. The H2O can easily be removed by condensation and pure CO2 is obtained without any loss of energy for separation. This makes chemical-looping combustion a most interesting alternative to other CO2 separation schemes, which have the drawback of a large energy consumption. A design of a boiler with chemical-looping combustion is proposed. The system involves two interconnected fluidized beds, a high-velocity riser and a low-velocity bed. Metal oxide particles are used as oxygen carrier. The reactivities needed for oxygen carriers to be suitable for such a process are estimated and compared to available experimental data for particles of Fe2O3 and NiO. The data available on oxygen carriers, although limited, indicate that the process outlined should be feasible.
0

Chemical-looping with oxygen uncoupling for combustion of solid fuels

Tobias Mattisson et al.Jul 30, 2008
Chemical-looping with oxygen uncoupling (CLOU) is a novel method to burn solid fuels in gas-phase oxygen without the need for an energy intensive air separation unit. The carbon dioxide from the combustion is inherently separated from the rest of the flue gases. CLOU is based on chemical-looping combustion (CLC) and involves three steps in two reactors, one air reactor where a metal oxide captures oxygen from the combustion air (step 1), and a fuel reactor where the metal oxide releases oxygen in the gas-phase (step 2) and where this gas-phase oxygen reacts with a fuel (step 3). In other proposed schemes for using chemical-looping combustion of solid fuels there is a need for an intermediate gasification step of the char with steam or carbon dioxide to form reactive gaseous compounds which then react with the oxygen carrier particles. The gasification of char with H2O and CO2 is inherently slow, resulting in slow overall rates of reaction. This slow gasification is avoided in the proposed process, since there is no intermediate gasification step needed and the char reacts directly with gas-phase oxygen. The process demands an oxygen carrier which has the ability to react with the oxygen in the combustion air in the air reactor but which decomposes to a reduced metal oxide and gas-phase oxygen in the fuel reactor. Three metal oxide systems with suitable thermodynamic properties have been identified, and a thermal analysis has shown that Mn2O3/Mn3O4 and CuO/Cu2O have suitable thermodynamic properties, although Co3O4/CoO may also be a possibility. However, the latter system has the disadvantage of an overall endothermic reaction in the fuel reactor. Results from batch laboratory fluidized bed tests with CuO and a gaseous and solid fuel are presented. The reaction rate of petroleum coke is approximately a factor 50 higher using CLOU in comparison to the reaction rate of the same fuel with an iron-based oxygen carrier in normal CLC.
0

Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion

Paul Cho et al.Dec 31, 2003
For combustion with CO2 capture, chemical-looping combustion (CLC) with inherent separation of CO2 is a promising technology. Two interconnected fluidized beds are used as reactors. In the fuel reactor, a gaseous fuel is oxidized by an oxygen carrier, e.g. metal oxide particles, producing carbon dioxide and water. The reduced oxygen carrier is then transported to the air reactor, where it is oxidized with air back to its original form before it is returned to the fuel reactor. The feasibility of using oxygen carrier based on oxides of iron, nickel, copper and manganese was investigated. Oxygen carrier particles were produced by freeze granulation. They were sintered at 1300 °C for 4 h and sieved to a size range of 125–180 μm. The reactivity of the oxygen carriers was evaluated in a laboratory fluidized bed reactor, simulating a CLC system by exposing the sample to alternating reducing and oxidizing conditions at 950 °C for all carriers except copper, which was tested at 850 °C. Oxygen carriers based on nickel, copper and iron showed high reactivity, enough to be feasible for a suggested CLC system. However, copper oxide particles agglomerated and may not be suitable as an oxygen carrier. Samples of the iron oxide with aluminium oxide showed signs of agglomeration. Nickel oxide showed the highest reduction rate, but displayed limited strength. The reactivity indicates a needed bed mass in the fuel reactor of about 80–330 kg/MWth and a needed recirculation flow of oxygen carrier of 4–8 kg/s, MWth.
0

Thermal Analysis of Chemical-Looping Combustion

Erik Jerndal et al.Aug 31, 2006
In chemical-looping combustion, a gaseous fuel is burnt with inherent separation of the greenhouse gas CO2. Oxygen is transferred from the combustion air to the fuel by an oxygen carrier, which is usually a metal oxide, and therefore direct contact between the fuel and the combustion air is avoided. Thus, the products of combustion, i.e., CO2 and H2O, are not mixed with the rest of the flue gases and after condensation almost pure CO2 is obtained, without any energy lost for the separation. A thermal analysis of the process using a large number of possible oxygen carriers was performed by simulating reactions using the HSC Chemistry 5.0 software. Three fuels were used in the investigation, CH4, CO and H2. Based on the ability of the oxygen carriers to convert the fuel to the combustion products CO2 and H2O, stability in air and the melting temperatures of the solid material some metal oxides based on Ni, Cu, Fe, Mn, Co, W and sulphates of Ba and Sr showed good ther-modynamic properties and could be feasible oxygen carriers. Only a few of these possible oxygen carrier systems, based on Cu, Fe and Mn, showed complete conversion of the fuel gas, but still the other systems had limited equilibrium restrictions, with only small and acceptable amounts of unreacted CO and H2 released from the fuel reactor. The promising systems were investigated further with respect to temperature changes in the fuel reactor as well as possible carbon, sulphide and sulphate formation in the fuel reactor. For some systems the reactions in the fuel reactor were endothermic, resulting in a temperature drop in the fuel reactor. However, this drop can be limited by applying a sufficient circulation of particles from the air reactor to the fuel reactor. When Ni or Co is used as oxygen carrier the fuel may need to be desulphurized prior to combustion to avoid formation of solid or liquid sulphides or sulphates. On the other hand, to prevent decomposition of the sulphates BaSO4 and SrSO4, in the fuel reactor, to sulphur-containing gases and metal oxides, it is necessary that some sulphur is present in the fuel and that high temperatures are avoided. Formation of carbon should not be a problem as long as the process is run under conditions of high fuel conversion.
0

Design and operation of a 10kWth chemical-looping combustor for solid fuels – Testing with South African coal

Nicolas Berguerand et al.Apr 9, 2008
This paper presents the results obtained for the operation of a 10 kWth chemical-looping combustor using a South African coal as the solid fuel and an oxygen carrier of ilmenite, a natural iron titanium oxide. A chemical-looping combustor for solid fuels was designed and built. It consists of two interconnected fluidized beds, an air reactor where the oxygen carrier is oxidized and a fuel reactor where the coal is gasified by steam and the syn-gases react with the oxygen carrier. A constant coal flow corresponding to a thermal power of 3.3 kW was introduced into the fuel reactor. The tests were conducted at temperatures above 850 °C and for a total test duration of 22 h. The particle integrity of ilmenite and the particle circulation between the two reactors were investigated and verified. The effects of particle circulation on coal conversion, gas conversion of the fuel reactor and carbon separation or CO2 capture between the air and fuel reactors were investigated. The actual CO2 capture ranged between 82.5% and 96% while the gas conversion from the fuel reactor was in the range 78–81%, based on measurements of unconverted CO and CH4.
0

The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2

Tobias Mattisson et al.Oct 1, 2001
Chemical-looping combustion (CLC) has been suggested as an energy efficient method for capture of carbon dioxide from combustion. The technique involves the use of a metal oxide as an oxygen carrier which transfers oxygen from the combustion air to the fuel, and the direct contact between fuel and combustion air is avoided. Thus, the products of combustion, i.e. carbon dioxide and water, are kept separate from the rest of the flue gas. After condensation of the water almost pure CO2 is obtained, without any energy lost for the separation. In this paper, the feasibility of using Fe2O3 as an oxygen carrier has been investigated in a fixed bed quartz reactor. Iron oxide was exposed to repeated cycles of air and methane at 950°C, with the outlet gas concentrations measured. The time under reducing conditions and the amount of bed material were varied in a wide range. The reduction rate of Fe2O3 to Fe (dX/dt) with 100% methane was between 1–8%/min and was a function of both the conversion range of the solid material, ΔX, as well as the yield of methane to carbon dioxide, γred. The rate of oxidation was also a function of ΔX and the gas conversion, γox, and was considerably faster than the reduction, with rates up to 90%/min. The parameters dX/dt, ΔX, and γ are closely related and can be used to establish design criteria of a CLC system based on interconnected fluidized beds. The rates of both reduction and oxidation found should be sufficient to be employed in a CLC system based on two interconnected fluidized beds.
0

The use of ilmenite as an oxygen carrier in chemical-looping combustion

Henrik Leion et al.Sep 1, 2008
The feasibility of using ilmenite as oxygen carrier in chemical-looping combustion has been investigated. It was found that ilmenite is an attractive and inexpensive oxygen carrier for chemical-looping combustion. A laboratory fluidized-bed reactor system, simulating chemical-looping combustion by exposing the sample to alternating reducing and oxidizing conditions, was used to investigate the reactivity. During the reducing phase, 15 g of ilmenite with a particle size of 125–180 μm was exposed to a flow of 450 mLn/min of either methane or syngas (50% CO, 50% H2) and during the oxidizing phase to a flow of 1000 mLn/min of 5% O2 in nitrogen. The ilmenite particles showed no decrease in reactivity in the laboratory experiments after 37 cycles of oxidation and reduction. Equilibrium calculations indicate that the reduced ilmenite is in the form FeTiO3 and the oxidized carrier is in the form Fe2TiO5 + TiO2. The theoretical oxygen transfer capacity between these oxidation states is 5%. The same oxygen transfer capacity was obtained in the laboratory experiments with syngas. Equilibrium calculations indicate that ilmenite should be able to give high conversion of the gases with the equilibrium ratios CO/(CO2 + CO) and H2/(H2O + H2) of 0.0006 and 0.0004, respectively. Laboratory experiments suggest a similar ratio for CO. The equilibrium calculations give a reaction enthalpy of the overall oxidation that is 11% higher than for the oxidation of methane per kmol of oxygen. Thus, the reduction from Fe2TiO5 + TiO2 to FeTiO3 with methane is endothermic, but less endothermic compared to NiO/Ni and Fe2O3/Fe3O4, and almost similar to Mn3O4/MnO.
Load More