MA
Mohammed Ansari
Author with expertise in Brain-Computer Interfaces in Neuroscience and Medicine
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
4
h-index:
12
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Enhancing ECG-based heart age: impact of acquisition parameters and generalization strategies for varying signal morphologies and corruptions

Mohammed Ansari et al.Jul 4, 2024
Electrocardiogram (ECG) is a non-invasive approach to capture the overall electrical activity produced by the contraction and relaxation of the cardiac muscles. It has been established in the literature that the difference between ECG-derived age and chronological age represents a general measure of cardiovascular health. Elevated ECG-derived age strongly correlates with cardiovascular conditions (e.g., atherosclerotic cardiovascular disease). However, the neural networks for ECG age estimation are yet to be thoroughly evaluated from the perspective of ECG acquisition parameters. Additionally, deep learning systems for ECG analysis encounter challenges in generalizing across diverse ECG morphologies in various ethnic groups and are susceptible to errors with signals that exhibit random or systematic distortions To address these challenges, we perform a comprehensive empirical study to determine the threshold for the sampling rate and duration of ECG signals while considering their impact on the computational cost of the neural networks. To tackle the concern of ECG waveform variability in different populations, we evaluate the feasibility of utilizing pre-trained and fine-tuned networks to estimate ECG age in different ethnic groups. Additionally, we empirically demonstrate that finetuning is an environmentally sustainable way to train neural networks, and it significantly decreases the ECG instances required (by more than 100× ) for attaining performance similar to the networks trained from random weight initialization on a complete dataset. Finally, we systematically evaluate augmentation schemes for ECG signals in the context of age estimation and introduce a random cropping scheme that provides best-in-class performance while using shorter-duration ECG signals. The results also show that random cropping enables the networks to perform well with systematic and random ECG signal corruptions.
0

GeoCrack: A High-Resolution Dataset For Segmentation of Fracture Edges in Geological Outcrops

Mohammed Ansari et al.Dec 3, 2024
GeoCrack is the first large-scale open source annotated dataset of fracture traces from geological outcrops, enabling deep learning-based fracture segmentation, setting a new standard for natural fracture characterization datasets. GeoCrack contains images from photogrammetric surveys of fractured rock exposures across 11 sites in Europe and the Middle East, capturing diverse lithologies and tectonic settings. Each image was cleaned, normalized, and manually segmented, followed by a recursive annotation vetting process to ensure the quality and accuracy of the digitized fracture edges. The processed images and corresponding binary masks were divided into 224 × 224 patches, yielding 12,158 pairs. GeoCrack captures representive real-world challenges in fracture edge annotation, such as contrast variations between fracture traces and the host medium due to geological and geomorphological factors like aperture dilation, host rock composition, outcrop weathering, and groundwater staining. Physical occlusions like shadows and vegetation are also considered to minimize false positives. GeoCrack was validated using a U-Net implementation for fracture segmentation, achieving satisfactory IoU of 85%. GeoCrack holds strong potential to advance deep fracture segmentation in geological applications, effectively tackling the diverse challenges of real-world fracture identification.
0

Advancing paleontology: a survey on deep learning methodologies in fossil image analysis

Mohammed Ansari et al.Jan 6, 2025
Abstract Understanding ancient organisms and their interactions with paleoenvironments through the study of body fossils is a central tenet of paleontology. Advances in digital image capture now allow for efficient and accurate documentation, curation, and interrogation of fossil forms and structures in two and three dimensions, extending from microfossils to larger specimens. Despite these developments, key fossil image processing and analysis tasks, such as segmentation and classification, still require significant user intervention, which can be labor-intensive and subject to human bias. Recent advances in deep learning offer the potential to automate fossil image analysis, improving throughput and limiting operator bias. Despite the emergence of deep learning within paleontology in the last decade, challenges such as the scarcity of diverse, high quality image datasets and the complexity of fossil morphology necessitate further advancement which will be aided by the adoption of concepts from other scientific domains. Here, we comprehensively review state-of-the-art deep learning based methodologies applied to fossil analysis, grouping the studies based on the fossil type and nature of the task. Furthermore, we analyze existing literature to tabulate dataset information, neural network architecture type, and key results, and provide textual summaries. Finally, we discuss novel techniques for fossil data augmentation and fossil image enhancements, which can be combined with advanced neural network architectures, such as diffusion models, generative hybrid networks, transformers, and graph neural networks, to improve body fossil image analysis.