FH
Fakhir Hannan
Author with expertise in Molecular Responses to Abiotic Stress in Plants
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
425
h-index:
20
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Effect of biochar on cadmium bioavailability and uptake in wheat ( Triticum aestivum L.) grown in a soil with aged contamination

Tahir Abbas et al.Feb 27, 2017
Cadmium (Cd) is a well-known and widespread toxic heavy metal while the effects of biochar (BC) on Cd bioavailability and toxicity in wheat, especially in soils with aged contamination are largely unknown. In the present study, the effect of rice straw BC on Cd immobilization in soil and uptake by wheat in an agricultural contaminated-soil was investigated. Different levels of rice straw BC (0%, 1.5%, 3.0% and 5% w/w) were incorporated into the soil and incubated for two weeks. After this, wheat plants were grown in the amended soil until maturity. The results show that the BC treatments increased the soil and soil solution pH and silicon contents in the plant tissues and in the soil solution while decreased the bioavailable Cd in soil. The BC application increased the plant-height, spike-length, shoot and root dry mass and grain yield in a dose additive manner when compared with control treatment. As compared to control, BC application increased the photosynthetic pigments and gas exchange parameters in leaves. Biochar treatments decreased the oxidative stress while increased the activities of antioxidant enzymes in shoots compared to the control. The BC treatments decreased the Cd and Ni while increased Zn and Mn concentrations in shoots, roots, and grains of wheat compared to the control. As compared to the control, Cd concentration in wheat grains decreased by 26%, 42%, and 57% after the application of 1.5%, 3.0%, and 5.0% BC respectively. Overall, the application of rice straw BC might be effective in immobilization of metal in the soil and reducing its uptake and translocation to grains.
0
Paper
Citation423
0
Save
0

Transcriptomic reprogramming of rice cultivars in response to herbicide, salt and their combined stresses

Faisal Islam et al.May 27, 2024
With the frequent fluctuations in global climate, plants are increasingly exposed to co-occurring abiotic stresses, which have adverse effects on plant growth and productivity. In order to understand the transcriptional responses of contrasting rice cultivars to combined stresses, we conducted transcriptome sequencing of rice seedlings grown under herbicide (2,4-Dichlorophenoxyacetic acid) and salinity (NaCl) treatments, both individually and in combination. The results revealed that the individual herbicide treatment alone led to the differential expression of genes related to herbicide response (such as Cytochrome P450), hormones regulation (including auxin, ethylene and abscisic acid), and glutathione metabolism, with unique patterns observed in each cultivar. Under saline stress, the resistant cultivar exhibited fewer unique stress-regulated differentially expressed genes (DEGs), while the sensitive cultivar showed increased expression of cation transporters compared to the resistant cultivar. The sensitive cultivar demonstrated greater susceptibility under the combined stress treatment, which was attributed to the malfunctioning of herbicide detoxification genes and the upregulation of key cation transporters (i.e OsCNGCs, OsHKTs), resulting in unregulated Na+ accumulation and oxidative toxicity in plants. Conversely, the resistant cultivar exhibited enrichment and activation of salt responsive DEGs associated with stress response, osmotic stress, and redox balance. Functional analysis of the DEGs also indicated an interconnected relationship between oxidative metabolism and cation transporters, which are rightly coordinated to maintain optimal cellular redox and ion balance. This coordination enables the initiation of proper signaling mechanisms to induce plant acclimation to individual or combined salinity and herbicide stresses.
0
Citation2
0
Save
0

Morphological, Physiological, and Molecular Responses to Heat Stress in Brassicaceae

Iram Batool et al.Jan 7, 2025
Food security is threatened by global warming, which also affects agricultural output. Various components of cells perceive elevated temperatures. Different signaling pathways in plants distinguish between the two types of temperature increases, mild warm temperatures and extremely hot temperatures. Given the rising global temperatures, heat stress has become a major abiotic challenge, affecting the growth and development of various crops and significantly reducing productivity. Brassica napus, the second-largest source of vegetable oil worldwide, faces drastic reductions in seed yield and quality under heat stress. This review summarizes recent research on the genetic and physiological impact of heat stress in the Brassicaceae family, as well as in model plants Arabidopsis and rice. Several studies show that extreme temperature fluctuations during crucial growth stages negatively affect plants, leading to impaired growth and reduced seed production. The review discusses the mechanisms of heat stress adaptation and the key regulatory genes involved. It also explores the emerging understanding of epigenetic modifications during heat stress. While such studies are limited in B. napus, contrasting trends in gene expression have been observed across different species and cultivars, suggesting these genes play a complex role in heat stress tolerance. Key knowledge gaps are identified regarding the impact of heat stress during the growth stages of B. napus. In-depth studies of these stages are still needed. The profound understanding of heat stress response mechanisms in tissue-specific models are crucial in advancing our knowledge of thermo-tolerance regulation in B. napus and supporting future breeding efforts for heat-tolerant crops.
0

Brassinosteroid-induced transcriptomic rearrangements unveiled the physiological mechanism of chromium stress tolerance in Brassica napus

Xiaofen Wu et al.Jun 1, 2024
Brassinosteroid (BR), a plant hormone regulating growth, development, and stress responses, emerges as a promising tool for maintaining agricultural production under abiotic stress conditions. In this study, we conducted RNA-seq profiling and morpho-physiological analysis to investigate the molecular cross-talk involved in 24-epibrassinolide (EBR) mediating alleviation of chromium (Cr) stress. EBR inhibited Cr accumulation and reversed Cr-induced phytotoxicity, thereby promoting plant growth. The photosynthetic pigments, chlorophyll fluorescence a, electron transport rate (ETR) and non-photochemical quenching (NPQ) were significantly higher in EBR+Cr treated plants compared to Cr alone. EBR application facilitated the recovery from Cr-induced structural deformities, including the disintegration of cell walls and membranes. Furthermore, under Cr stress, EBR application reduced malondialdehyde (MDA) and reactive oxygen species (ROS) production and accumulation. The levels of glutathione reductase (GR) and the activities of antioxidant enzymes were notably higher in plants subjected to EBR application following Cr stress. In addition, we established a transcriptomic database comprising 2345 differentially expressed genes (DEGs) (1255 upregulated and 1090 downregulated) as a result of EBR application under Cr stress. The transcriptome analysis unveiled key DEGs and the associated pathways, emphasizing the importance of defense responses, genes encoding photosystem I and II, jasmonate signaling, aquaporins, ABC transporters, and cell wall biogenesis-related genes in the response of EBR to Cr stress.