RL
Runze Li
Author with expertise in Advanced Monitoring of Machining Operations
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(13% Open Access)
Cited by:
2,683
h-index:
42
/
i10-index:
70
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions

Min Yang et al.Jun 14, 2017
This study investigates the critical maximum undeformed equivalent chip thickness for ductile-brittle transition (DBhmax-e) of zirconia ceramics under different lubrication conditions. A DBhmax-e model is developed through geometry and kinematics analyses of ductile-mode grinding. Result shows that DBhmax-e decreases with increasing friction coefficient (μ). An experimental investigation is then conducted to validate the model and determine the effect of dry lubrication, minimum quantity lubrication (MQL), and nanoparticle jet minimum quantity lubrication (NJMQL) conditions on DBhmax-e. According to different formation mechanisms of debris, the grinding behavior of zirconia ceramics is categorized into elastic sliding friction, plastic removal, powder removal, and brittle removal. Grinding forces per unit undeformed chip thickness (Fn/h and Ft/h) are obtained. The lubrication condition affects the normal force and ultimately influences the resultant force on workpiece. In comparison with dry grinding (DBhmax-e = 0.8 μm), MQL and NJMQL grinding processes increase DBhmax-e by 0.99 and 1.79 μm respectively; this finding is similar to model result. The theoretical model is then assessed by different volume fractions of nanofluids under NJMQL condition with an average percentage error of less than 8.6%.
0

Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms

Yanbin Zhang et al.Jun 14, 2017
Numerous researchers have developed theoretical and experimental approaches to force prediction in surface grinding under dry conditions. Nevertheless, the combined effect of material removal and plastic stacking on grinding force model has not been investigated. In addition, predominant lubricating conditions, such as flood, minimum quantity lubrication, and nanofluid minimum quantity lubrication, have not been considered in existing force models. This work presents an improved theoretical force model that considers material-removal and plastic-stacking mechanisms. Grain states, including cutting and ploughing, are determined by cutting efficiency (β). The influence of lubricating conditions is also considered in the proposed force model. Simulation is performed to obtain the cutting depth (ag) of each “dynamic active grain.” Parameter β is introduced to represent the plastic-stacking rate and determine the force algorithms of each grain. The aggregate force is derived through the synthesis of each single-grain force. Finally, pilot experiments are conducted to test the theoretical model. Findings show that the model's predictions are consistent with the experimental results, with average errors of 4.19% and 4.31% for the normal and tangential force components, respectively.
0

Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air

Jianchao Zhang et al.May 2, 2018
Sustainable development and green manufacturing are becoming an international consensus in the face of the threat of severe environmental pollution and waste of resources. Cryogenic air (CA) and nanofluid minimum quantity lubrication (NMQL) are state-of-the-art green manufacturing technologies. However, the lubricating performance of cryogenic air is ineffective, and the cooling ability of nanofluids minimum quantity lubrication is unsatisfactory. To specifically address the bottlenecks in these manufacturing methods, a new green processing technology combining their advantages was proposed, namely, cryogenic air nanofluid minimum quantity lubrication (CNMQL). Compared to traditional processing modes and other green technologies, cryogenic air nanofluid minimum quantity lubrication is superior for its economic efficiency, low carbon use, high utilization efficiency, energy saving as well as excellent cooling and lubricating performances. A surface grinding experiment was conducted under three lubricating conditions (cryogenic air, minimum quantity lubrication, and cryogenic air nanofluids minimum quantity lubrication) with Ti6Al4V as the workpiece material. Experimental results showed that: cryogenic air nanofluids minimum quantity lubrication achieved the best lubricating effect and obtained minimum specific grinding energy (51.96 J/mm3) and friction coefficient (0.60), followed by nanofluids minimum quantity lubrication and cryogenic air. The lubricating mechanisms under cryogenic air nanofluids minimum quantity lubrication and nanofluids minimum quantity lubrication conditions were also analyzed according to the viscosity of nanofluid lubricants in grinding zone, contact angle, stability of lubricating oil film, atomization effect of droplets, and microtopography of workpiece surface. Relative to other conditions, the higher viscosity and larger contact angle of nanofluid lubricants under cryogenic air nanofluids minimum quantity lubrication condition led to higher stability and better lubricating effect of the lubricating oil film in the grinding zone. Droplets sprayed onto the grinding zone had a larger atomization angle, and the distribution density of droplets in the entire atomization spraying zone was relatively uniform. The droplets were uniformly distributed and had a larger spreading area, facilitating superior atomization effect in the grinding zone. On the other hand, workpiece surface had clear and smooth grinding pipelines, which presented minimal obstruction for the longitudinal flow and horizontal spreading effect of the micrometer pipelines, so the nanofluid lubricants achieved better spreading infiltration effect. Under the joint influence of the above factors, cryogenic air nanofluids minimum quantity lubrication achieved optimal lubricating effect, thus obtaining minimum specific grinding energy and friction coefficient.
0

Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions

Min Yang et al.Apr 30, 2019
To address the current bottleneck of debris formation mechanism in plastic removal for hard-brittle materials, a minimum chip thickness (hmin) model that considers lubrication conditions (represented by frictional angle β) is developed according to strain gradient, as well as geometry and kinematics analyses. Model results show that hmin decreases with increasing β. Furthermore, grinding experiments using single diamond grain under different lubricating conditions are carried out to verify the model. With increasing β, hmin values are 71.6, 57.8, 52.0, 50.7, 45.6, 39.7, and 32.4 nm, thereby verifying the trend of hmin decreasing with increasing β. Furthermore, the location of size effect occurs is determined according to the variation trend of single abrasive particle specific energy and unit grinding force curves. The size effect occurs in the border area of ploughing, the cutting region, and mainly, in the ploughing region. Theoretical analysis results are consistent with experimental results with a model error of 6.06%, thereby confirming the validity of the theoretical model.
0

Noninvasive imaging-guided ultrasonic neurostimulation with arbitrary 2D patterns and its application for high-quality vision restoration

Guoxing Lu et al.May 27, 2024
Abstract Retinal degeneration, a leading cause of irreversible low vision and blindness globally, can be partially addressed by retina prostheses which stimulate remaining neurons in the retina. However, existing electrode-based treatments are invasive, posing substantial risks to patients and healthcare providers. Here, we introduce a completely noninvasive ultrasonic retina prosthesis, featuring a customized ultrasound two-dimensional array which allows for simultaneous imaging and stimulation. With synchronous three-dimensional imaging guidance and auto-alignment technology, ultrasonic retina prosthesis can generate programmed ultrasound waves to dynamically and precisely form arbitrary wave patterns on the retina. Neuron responses in the brain’s visual center mirrored these patterns, evidencing successful artificial vision creation, which was further corroborated in behavior experiments. Quantitative analysis of the spatial-temporal resolution and field of view demonstrated advanced performance of ultrasonic retina prosthesis and elucidated the biophysical mechanism of retinal stimulation. As a noninvasive blindness prosthesis, ultrasonic retina prosthesis could lead to a more effective, widely acceptable treatment for blind patients. Its real-time imaging-guided stimulation strategy with a single ultrasound array, could also benefit ultrasound neurostimulation in other diseases.
Load More