CK
Cengiz Kaya
Author with expertise in Molecular Responses to Abiotic Stress in Plants
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(33% Open Access)
Cited by:
2,961
h-index:
55
/
i10-index:
124
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants

A. Tuna et al.Jun 23, 2007
The combined effects of salt stress and gibberellic acid (GA3) on plant growth and nutritional status of maize (Zea mays L. cv., DK 647 F1) were studied in a pot experiment. Treatments were (1) control (C): nutrient solution alone, (2) salt stress (S): 100 mM NaCl, (3) S + GA1: 100 mM NaCl and 50 ppm GA3 and (4) S + GA2: 100 mM NaCl and 100 ppm GA3. Salt stress (S) was found to reduce the total dry matter, chlorophyll content, relative water content (RWC), but to increase proline accumulation, superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC 1.11.1.7) and polyphenol oxidase (PPO; 1.10.3.1) enzyme activities and electrolyte leakage. GA3 treatments overcame to variable extents the adverse effects of NaCl stress on the above physiological parameters. GA3 treatments reduced the activities of enzyme in the salt-stressed plants. Salt stress reduced some macro and micronutrient concentrations but exogenous application of GA3 increased these to levels of control treatment. Foliar application of GA3 counteracted some of the adverse effects of NaCl salinity with the accumulation of proline which maintained membrane permeability and increased macro and micronutrient levels.
0
Paper
Citation368
0
Save
0

Silicon improves salinity tolerance in wheat plants

A. Tuna et al.Jun 23, 2007
Durum wheat (Triticum durum cv. Gediz-75) and bread wheat (Triticum aestivum cv. Izmir-85) were grown in a complete nutrient solution in a growth room to investigate effect of silicone supplied to the nutrient solution on plants grown at salt stress. The experiment was a 2 × 2 factorial arrangement with two levels of NaCl in nutrient solution, 0 and 100 mM, and two levels of silicone (Si) in nutrient solution, 0.25 and 0.50 mM, as Na2SiO3. The plants grown at 100 mM NaCl produced less dry matter and chlorophyll content than those without NaCl. Supplementary Si at both 0.25 and 0.5 mM ameliorated the negative effects of salinity on plant dry matter and chlorophyll content. Membrane permeability and proline content in leaves increased with addition of 100 mM NaCl and these increases were decreased with Si treatments. Sodium (Na) concentration in plant tissues increased in both leaves and roots of plants in the high NaCl treatment and Si treatments lowered significantly the concentrations of Na in both leaves and roots. Bread wheat was more tolerant to salinity than durum wheat. The accumulation of Na in roots indicates a possible mechanism whereby bread wheat copes with salinity in the rooting medium and/or may indicate the existence of an inhibition mechanism of Na transport to leaves. Concentrations of both Ca and K were lower in the plants grown at high NaCl than in those in the control treatment and these two element concentrations were increased by Si treatments in both shoots and roots but remained lower than control values in most cases.
0
Paper
Citation346
0
Save
0

The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress

A. Tuna et al.Mar 30, 2006
A pot experiment was carried out with tomato (Lycopersicon esculentum Mill.) cv. “Target F1” in a mixture of peat, perlite, and sand (1:1:1) to investigate the effects of supplementary calcium sulphate on plants grown at high NaCl concentration (75 mM). The treatments were: (i) control (C), nutrient solution alone; (ii) salt treatment (C + S), 75 mM NaCl; (iii) salt plus calcium treatment 1 (C + S + Ca1), 75 mM NaCl plus additional mixture of 2.5 mM CaSO4 in nutrient solution; (iv) salt plus calcium treatment 2 (C + S + Ca2), 75 mM NaCl plus additional mixture of 5 mM CaSO4 in nutrient solution. The plants grown under salt stress produced low dry matter, fruit weight, and relative water content than those grown in standard nutrient solution. Supplemental calcium sulphate added to nutrient solution containing salt significantly improved growth and physiological variables affected by salt stress (e.g. plant growth, fruit yield, and membrane permeability) and also increased leaf K+, Ca2+, and N in tomato plants. The effects of supplemental CaSO4 in maintaining membrane permeability, increasing concentrations of Ca2+, N, and K+ and reducing concentration of Na+ (because of cation competition in root zone) in leaves could offer an economical and simple solution to tomato crop production problems caused by high salinity.
0
Citation330
0
Save
0

Effect of Silicon on Plant Growth and Mineral Nutrition of Maize Grown Under Water-Stress Conditions

Cengiz Kaya et al.Aug 1, 2006
ABSTRACT The effect of silicon (Si) on physiological attributes and nutritional status of maize (Zea mays cv. DK 647 F1) under water stress was studied in a pot experiment. Treatments were (1) well watered (WW): 100% of FC (soil field capacity), (2) WW + Si1: 100% of FC + 1 mM Si, (3) WW + Si2: 100% of FC + 2 mM Si, (4) water stress (WS): 50% of FC, (5) WS + Si1: 50% of FC + 1 mM Si and (6) WS + Si2: 50% of FC + 2 mM Si. In the control treatment, plants were irrigated to field capacity (100% FC). Water stress was imposed by maintaining a moisture level equivalent to 50% of field capacity, whereas the well-watered pots (control) were maintained at full field capacity. Water stress was found to reduce the total dry matter (DM), chlorophyll content, and relative water content (RWC), but to increase proline accumulation and electrolyte leakage in maize plants. Both Si treatments largely improved the above physiological parameters, but levels remained significantly lower than the control (WW) values except for electrolyte leakage and root:shoot ratios, which were higher. Only root DM appeared to show very little variation in any of the treatments. The concentration of Si in the plants was increased by Si addition into the nutrient solution. Water stress reduced leaf calcium (Ca) and potassium (K) of maize plants, but addition of Si increased these nutrient levels; Ca levels were similar to WW under the high-Si treatment, but K was lower. Root Ca and K were both increased by WS; root Ca was further increased by high Si (WS + Si2 treatment). Addition of Si to the WS treatments did not change root K. Results indicate that while application of Si may be one approach to improve growth of this crop and increase its production in arid or semi-arid areas where water is at a premium, this technique would not fully substitute for an adequate water supply.
0

Integrative roles of nitric oxide and hydrogen sulfide in melatonin‐induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination

Cengiz Kaya et al.Apr 13, 2019
There seems to be no report in the literature on the effect of melatonin (MT) in relieving the detrimental effects of combined application of salt stress (SS) and iron deficiency (ID). Therefore, the effect of MT on the accumulation/synthesis of endogenous nitric oxide (NO) and hydrogen sulphide (H2 S) and how far these molecules are involved in MT-improved tolerance to the combined application of ID and SS in pepper (Capsicum annuum L) were tested. Hence, two individual trials were set up. The treatments in the first experiment comprised: Control, ID (0.1 mM FeSO4 ), SS (100 mM NaCl) and ID + SS. The detrimental effects of combined stresses were more prominent than those by either of the single stress, with respect to growth, oxidative stress and antioxidant defense attributes. Single stress or both in combination improved the endogenous H2 S and NO, and foliar-applied MT (100 µM) led to a further increase in NO and H2 S levels. In the second experiment, 0.1 mM scavenger of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) and that of H2 S, hypotuarine (HT) were applied along with MT to get further evidence whether NO and H2 S are involved in MT-induced tolerance to ID and SS. MT combined with cPTIO and HT under a single or combined stress showed that NO effect was reversed by the NO scavenger, cPTIO, alone but the H2 S effect was inhibited by both scavengers. These findings suggested that tolerance to ID and SS induced by MT may be involved in downstream signal crosstalk between NO and H2 S.
0

Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress

Cengiz Kaya et al.Jul 25, 2019
We conducted a study to evaluate the interactive effect of NO and H2 S on the cadmium (Cd) tolerance of wheat. Cadmium stress considerably reduced total dry weight, chlorophyll a and b content and ratio of Fv/Fm by 36.7, 48.6, 26.7 and 19.5%, respectively, but significantly enhanced the levels of hydrogen peroxide (H2 O2 ) and malondialdehyde (MDA), endogenous H2 S and NO, and the activities of antioxidant enzymes. Exogenously applied sodium nitroprusside (SNP) and sodium hydrosulfide (NaHS), donors of NO and H2 S, respectively, enhanced total plant dry matter by 47.8 and 39.1%, chlorophyll a by 92.3 and 61.5%, chlorophyll b content by 29.1 and 27.2%, Fv/Fm ratio by 19.7 and 15.2%, respectively, and the activities of antioxidant enzymes, but lowered oxidative stress and proline content in Cd-stressed wheat plants. NaHS and SNP also considerably limited both the uptake and translocation of Cd, thereby improving the levels of some key mineral nutrients in the plants. Enhanced levels of NO and H2 S induced by NaHS were reversed by hypotuarine application, but they were substantially reduced almost to 50% by cPTIO (a NO scavenger) application. Hypotuarine was not effective, but cPTIO was highly effective in reducing the levels of NO and H2 S produced by SNP in the roots of Cd-stressed plants. The results showed that interactive effect of NO and H2 S can considerably improve plant resistance against Cd toxicity by reducing oxidative stress and uptake of Cd in plants as well as by enhancing antioxidative defence system and uptake of some essential mineral nutrients.
0

Zinc Oxide Nanoparticles Application Alleviates Arsenic (As) Toxicity in Soybean Plants by Restricting the Uptake of as and Modulating Key Biochemical Attributes, Antioxidant Enzymes, Ascorbate-Glutathione Cycle and Glyoxalase System

Parvaiz Ahmad et al.Jun 30, 2020
Accumulation of arsenic (As) in soils is increasing consistently day-by-day, which has resulted in increased toxicity of this element in various crop plants. Arsenic interferes with several plant metabolic processes at molecular, biochemical and physiological levels, which result in reduced plant productivity. Hence, the introduction of novel ameliorating agents to combat this situation is the need of the hour. The present study was designed to examine the effect of zinc oxide nanoparticles (ZnO-NPs) in As-stressed soybean plants. Various plant growth factors and enzymes were studied at varying concentrations of As and ZnO-NPs. Our results showed that with the application of ZnO-NPs, As concentration declined in both root and shoot of soybean plants. The lengths of shoot and root, net photosynthetic rate, transpiration, stomatal conductance, photochemical yield and other factors declined with an increase in external As level. However, the application of ZnO-NPs to the As-stressed soybean plants resulted in a considerable increase in these factors. Moreover, the enzymes involved in the ascorbate-glutathione cycle including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) showed a significant increase in their activity with the application of ZnO-NPs to the As-stressed plants. Hence, our study confirms the significance of ZnO-NPs in alleviating the toxicity of As in soybean plants.
Load More