ZL
Zhiwei Lian
Author with expertise in Building Energy Efficiency and Thermal Comfort Optimization
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(11% Open Access)
Cited by:
1,246
h-index:
54
/
i10-index:
143
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance

Li Lan et al.Feb 9, 2011
The effects of thermal discomfort on health and human performance were investigated in an office, in an attempt to elucidate the physiological mechanisms involved. Twelve subjects (six men and six women) performed neurobehavioral tests and tasks typical of office work while thermally neutral (at 22°C) and while warm (at 30°C). Multiple physiological measurements and subjective assessment were made. The results show that when the subjects felt warm, they assessed the air quality to be worse, reported increased intensity of many sick building syndrome symptoms, expressed more negative mood, and were less willing to exert effort. Task performance decreased when the subjects felt warm. Their heart rate, respiratory ventilation, and end-tidal partial pressure of carbon dioxide increased significantly, and their arterial oxygen saturation decreased. Tear film quality was found to be significantly reduced at the higher temperature when they felt warm. No effects were observed on salivary biomarkers (alpha-amylase and cortisol). The present results imply that the negative effects on health and performance that occur when people feel thermally warm at raised temperatures are caused by physiological mechanisms.This study indicates to what extent elevated temperatures and thermal discomfort because of warmth result in negative effects on health and performance and shows that these could be caused by physiological responses to warmth, not by the distraction of subjective discomfort. This implies that they will occur independently of discomfort, i.e. even if subjects have become adaptively habituated to subjective discomfort. The findings make it possible to estimate the negative economic consequences of reducing energy use in buildings in cases where this results in elevated indoor temperatures. They show clearly that thermal discomfort because of raised temperatures should be avoided in workplaces.
0

Effects of exposure to carbon dioxide and bioeffluents on perceived air quality, self-assessed acute health symptoms, and cognitive performance

Xi Zhang et al.Jan 30, 2016
The purpose of this study was to examine the effects on humans of exposure to carbon dioxide (CO2 ) and bioeffluents. In three of the five exposures, the outdoor air supply rate was high enough to remove bioeffluents, resulting in a CO2 level of 500 ppm. Chemically pure CO2 was added to this reference condition to create exposure conditions with CO2 at 1000 or 3000 ppm. In two further conditions, the outdoor air supply rate was restricted so that the bioeffluent CO2 reached 1000 or 3000 ppm. The same 25 subjects were exposed for 255 min to each condition. Subjective ratings, physiological responses, and cognitive performance were measured. No statistically significant effects on perceived air quality, acute health symptoms, or cognitive performance were seen during exposures when CO2 was added. Exposures to bioeffluents with CO2 at 3000 ppm reduced perceived air quality; increased the intensity of reported headache, fatigue, sleepiness, and difficulty in thinking clearly; and reduced speed of addition, the response time in a redirection task, and the number of correct links made in the cue-utilization test. This suggests that moderate concentrations of bioeffluents, but not pure CO2 , will result in deleterious effects on occupants during typical indoor exposures.
0
Paper
Citation283
0
Save
0

Occupant-Centric Cabin Thermal Sensation Assessment System Based on Low-Cost Thermal Imaging

Z Hou et al.May 28, 2024
Assessing cabin occupants' thermal sensation in real-time enables automatic control of car air conditioning, improving driving safety and energy efficiency. Traditional methods, limited by their need for numerous physiological parameters, have restricted practicality. For this purpose, this study employs a low-cost thermal imaging sensor as the hardware core to establish a cost-effective and non-contact real-time assessment system for thermal comfort of occupants within a cabin. The system comprises a thermal sensation assessment model developed based on subject experiments, along with facial recognition and segmentation algorithms optimized for thermal images. The thermal sensation assessment model developed, which employs cheek temperature, solar radiation intensity, and cabin air temperature as its features, exhibited a R2 of 0.617 on the test set. Furthermore, the facial recognition algorithm established for thermographic imaging achieved a mean accuracy of 96.5% and a recall rate of 99.0%. The system underwent validation in real-world vehicle environments, proving its ability to accurately detect and measure the cheek temperatures of occupants in the cabin and execute thermal sensation assessments. With a mean absolute error of 0.5 thermal sensation units in its output, its accuracy in practical applications was affirmed. This research provides an effective solution for automatically adjusting cabin air conditioning.
0

Exploring the correlation and synchronicity between environmental factors and occupant thermal response in dynamic outdoor cabin environments

Zhiwei Lian et al.Jun 6, 2024
To improve the cabin thermal environment and explore advanced automotive air-conditioning control methods, it is essential to understand the key factors affecting occupant thermal response as well as the synchronicity of the thermal response to environmental changes in outdoor conditions. Given the current gaps in research, this study conducted outdoor subject experiments in summer to analyze the correlation and synchronicity between the cabin thermal environment and occupant thermal sensation as well as facial skin temperature. Results showed that, during the cooling phases of experiments with high initial cabin air temperatures, occupant thermal sensation improved significantly within seven minutes. After 15 minutes, facial skin temperature and thermal sensation reached quasi-steady states. Thermal sensation was primarily influenced by air temperature, followed by solar radiation, and exhibited significant synchronicity with changes in these factors. When the air temperature stabilized at around 26 °C, every 200 W/m2 of solar radiation exposure increased the thermal sensation unit during the 40-minute experiment period. Cheek and nose skin temperatures were significantly correlated with air temperature and solar radiation, and were sensitive to environmental changes, synchronizing with changes in air temperature and relative humidity. Further analysis showed the feasibility of using cheek and nose skin temperatures to characterize the occupant thermal sensation in a cabin. Additionally, this study found sex differences in the occupant thermal response in a cabin. The results provide insight into the key optimization parameters for comfort-oriented cabin thermal environment design and offer support for future air conditioning control in cabins based on thermal imaging.
0

Sex differences in body temperature and thermal perception under stable and transient thermal environments: A comparative study

Xiuling Xu et al.Aug 10, 2024
Sex difference stands as a crucial factor necessitating consideration in personalized thermal environment control, with the mechanisms of its emergence potentially differing across different thermal environments. However, a comparative analysis of sex differences regarding body temperature (skin and core body temperature) and thermal perception across different environments is lacking. A stable environmental experiment (comprising three conditions: 16 °C, 20 °C, and 24 °C) and a transient environmental experiment (involving a whole-body step-change from 19 °C to 35 °C and back to 19 °C) were conducted, with participation from 20 young males and 20 young females. Skin temperature and core body temperature were continuously recorded during the experiments, and three types of thermal perceptions were regularly collected. The results showed that: (1) The impact of thermal environment on females' skin temperature surpassed that on males, in stable environment, with every 1 °C rise in ambient temperature, the mean skin temperature increased by 0.28 °C for males and 0.35 °C for females respectively; in transient environment, females' mean skin temperature raise and fell at a faster rate. (2) Males exhibited stronger thermal regulation abilities than females, particularly evident during sudden increase in ambient temperature (from 19 °C to 35 °C), where the reduction magnitude of males' core body temperature was notably larger. (3) Whether in stable or transient environments, significant sex differences often occurred in skin temperature and thermal sensation at distal parts, particularly at the hand. (4) Males typically fed back higher levels of thermal comfort and thermal acceptability than females, suggesting that in addition to physiological sex differences, psychological sex distinctions also play a role. In summary, personalized design for stable thermal environment can focus on sex differences in skin temperature, while transient thermal environment requires consideration of both skin temperature and core body temperature. A comprehensive consideration of physiological and psychological sex differences aids in creating personalized thermal environments with greater precision.