VS
Václav Snåšel
Author with expertise in Swarm Intelligence Optimization Algorithms
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
13
(38% Open Access)
Cited by:
5
h-index:
44
/
i10-index:
254
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Optimizing AVR system performance via a novel cascaded RPIDD2-FOPI controller and QWGBO approach

Serdar Ekinci et al.May 28, 2024
Maintaining stable voltage levels is essential for power systems’ efficiency and reliability. Voltage fluctuations during load changes can lead to equipment damage and costly disruptions. Automatic voltage regulators (AVRs) are traditionally used to address this issue, regulating generator terminal voltage. Despite progress in control methodologies, challenges persist, including robustness and response time limitations. Therefore, this study introduces a novel approach to AVR control, aiming to enhance robustness and efficiency. A custom optimizer, the quadratic wavelet-enhanced gradient-based optimization (QWGBO) algorithm, is developed. QWGBO refines the gradient-based optimization (GBO) by introducing exploration and exploitation improvements. The algorithm integrates quadratic interpolation mutation and wavelet mutation strategy to enhance search efficiency. Extensive tests using benchmark functions demonstrate the QWGBO’s effectiveness in optimization. Comparative assessments against existing optimization algorithms and recent techniques confirm QWGBO’s superior performance. In AVR control, QWGBO is coupled with a cascaded real proportional-integral-derivative with second order derivative (RPIDD 2 ) and fractional-order proportional-integral (FOPI) controller, aiming for precision, stability, and quick response. The algorithm’s performance is verified through rigorous simulations, emphasizing its effectiveness in optimizing complex engineering problems. Comparative analyses highlight QWGBO’s superiority over existing algorithms, positioning it as a promising solution for optimizing power system control and contributing to the advancement of robust and efficient power systems.
0

Optimized long short-term memory with rough set for sustainable forecasting renewable energy generation

Gehad Sayed et al.Jun 1, 2024
Research and development in the field of renewable energy is receiving more attention as a result of the growing demand for clean, sustainable energy. This paper proposes a model for forecasting renewable energy generation. The proposed model consists of three main phases: data preparation, feature selection-based rough set and nutcracker optimization algorithm (NOA), and data classification and cross-validation. First, the missing values are tackled using the mean method. Then, data normalization and data shuffling are applied in the data preparation phase. In the second phase, a new feature selection algorithm is proposed based on rough set theory and NOA, namely RSNOA. The proposed RSNOA is based on adopting the rough set method as the fitness function during the searching mechanism to find the optimal feature subset. Finally, a custom long-short-term memory architecture with the k-fold cross-validation method is utilized in the last phase. The experimental results revealed that the proposed model is very competitive. It is achieved with 4.2113 root mean square error, 0.96 R², 2.835 mean absolute error, and 4.6349 mean absolute percentage error. The findings also show that the proposed model has great promise as a useful tool for accurately forecasting renewable energy generation across various sources.
0

An activity level based surrogate-assisted evolutionary algorithm for many-objective optimization

Jeng‐Shyang Pan et al.Jul 9, 2024
Addressing expensive many-objective optimization problems (MaOPs) is a formidable challenge owing to their intricate objective spaces and high computational demands. Surrogate-assisted evolutionary algorithms (SAEAs) have gained prominence because of their ability to tackle MaOPs efficiently. They achieve this by using surrogate models to approximate objective functions, significantly reducing their reliance on costly evaluations. However, the effectiveness of many SAEAs is hampered by their reliance on various surrogate models and optimization strategies, which often result in suboptimal prediction accuracy and optimization performance. This study introduces a novel approach: an activity level based surrogate-assisted reference vector guided evolutionary algorithm specifically designed for expensive MaOPs. Utilizing the Kriging model and an angle penalty distance criterion, this algorithm effectively filters solutions that require evaluation using the original function. It employs a fixed number of training sets,that are updated via a two-screening strategy that leverages activity levels to refine population screening. This process ensures that the reference vector progressively aligns more closely with the Pareto fronts,which is enhanced by the deployment of adjusted adaptive reference vectors, thereby improving the screening precision. The proposed algorithm was tested against six contemporary algorithms using the DTLZ, WFG, and MaF test suites.The experimental results show that the proposed method outperforms other algorithms in most problems. Furthermore, its application to the cloud computing task scheduling problem underscores its practical value, demonstrating its notable effectiveness. The experimental outcomes attest to the robust performance of the algorithm across both test scenarios and real-world applications.
0

Analysis on fetal phonocardiography segmentation problem by hybridized classifier

Lingping Kong et al.Jun 5, 2024
Fetal examinations are a significant and challenging field of healthcare. Cardiotocography is the most commonly used method for monitoring fetal heart rate and uterine contractions. As a promising alternative to cardiotocography, fetal phonocardiography is beginning to emerge. It is an entirely non-invasive, passive, and low-cost method. However, it is tough to estimate the ideal form of the fetal sound signal in most cases due to the presence of disturbances. The disturbances originate from movements or rotations of the fetal body, making fetal heart sound processing difficult. This study presents an automatic method for segmenting the fetal heart sounds in a phonocardiographic signal that is loaded with different types of disturbances and analyzes which of these disturbances most affect segmentation accuracy. To provide a comprehensive investigation, we propose a hybrid classifier based on Transformer and eXtreme Gradient Boosting, short for XGBoost, to improve segmentation performance by decision-making integration. 2000 segments of data from the Research Resource for Complex Physiologic Signals, PhysioNet repository, and created synthetic data (873 recordings) were used for the experiment. In the S1 label, our proposed method ranks first among all compared algorithms in precision, recall, F1, and accuracy score, tying with Transformer in recall score. It achieves an accuracy increase of 5% and 1.3% compared to XGBoost and Transformer, respectively. Similarly, in the S2 label, there is a precision score increase of 5.8% and 3.7% compared to XGBoost and Transformer, respectively. In general, our proposed method shows effective and promising performance..
0

A hybrid analysis method for calculating the cogging torque of consequent pole hybrid excitation synchronous machine

Jie Wu et al.Jun 12, 2024
Purpose When solving the cogging torque of complex electromagnetic structures, such as consequent pole hybrid excitation synchronous (CPHES) machine, traditional methods have a huge computational complexity. The notable feature of CPHES machine is the symmetric range of field-strengthening and field-weakening, but this type of machine is destined to be equipped with a complex electromagnetic structure. The purpose of this paper is to propose a hybrid analysis method to quickly and accurately solve the cogging torque of complex 3D electromagnetic structure, which is applicable to CPHES machine with different magnetic pole shapings. Design/methodology/approach In this paper, a hybrid method for calculating the cogging torque of CPHES machine is proposed, which considers three commonly used pole shapings. Firstly, through magnetic field analysis, the complex 3D finite element analysis (FEA) is simplified to 2D field computing. Secondly, the discretization method is used to obtain the distribution of permeance and permeance differential along the circumference of the air-gap, taking into account the effect of slots. Finally, the cogging torque of the whole motor is obtained by using the idea of modular calculation and the symmetry of the rotor structure. Findings This method is applicable to different pole shapings. The experimental results show that the proposed method is consistent with 3D FEA and experimental measured results, and the average calculation time is reduced from 8 h to 4 min. Originality/value This paper proposes a new concept for calculating cogging torque, which is a hybrid calculation of dimension reduction and discretization modules. Based on magnetic field analysis, the 3D problem is simplified into a 2D issue, reducing computational complexity. Based on the symmetry of the machine structure, a modeling method for discretized analytical models is proposed to calculate the cogging torque of the machine.
Load More