DB
D. Bauer
Author with expertise in Particle Physics and High-Energy Collider Experiments
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(100% Open Access)
Cited by:
3,957
h-index:
66
/
i10-index:
298
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Search for Weakly Interacting Massive Particles with the First Five-Tower Data from the Cryogenic Dark Matter Search at the Soudan Underground Laboratory

Zeeshan Ahmed et al.Jan 5, 2009
We report first results from the Cryogenic Dark Matter Search (CDMS II) experiment running with its full complement of 30 cryogenic particle detectors at the Soudan Underground Laboratory. This report is based on the analysis of data acquired between October 2006 and July 2007 from 15 Ge detectors (3.75 kg), giving an effective exposure of 121.3 kg-d (averaged over recoil energies 10--100 keV, weighted for a weakly interacting massive particle (WIMP) mass of 60 \gev). A blind analysis, incorporating improved techniques for event reconstruction and data quality monitoring, resulted in zero observed events. This analysis sets an upper limit on the WIMP-nucleon spin-independent cross section of 6.6$\times10^{-44}$ cm$^2$ (4.6$\times10^{-44}$ cm$^2$ when combined with previous CDMS Soudan data) at the 90% confidence level for a WIMP mass of 60 \gev. By providing the best sensitivity for dark matter WIMPs with masses above 42 GeV/c$^2$, this work significantly restricts the parameter space for some of the favored supersymmetric models.
0

Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment

D. Akerib et al.Mar 4, 2020
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above $1.4\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}48}\text{ }\text{ }{\mathrm{cm}}^{2}$ for a $40\text{ }\text{ }\mathrm{GeV}/{c}^{2}$ mass WIMP. Additionally, a $5\ensuremath{\sigma}$ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of $2.3\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}43}\text{ }\text{ }{\mathrm{cm}}^{2}$ ($7.1\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}42}\text{ }\text{ }{\mathrm{cm}}^{2}$) for a $40\text{ }\text{ }\mathrm{GeV}/{c}^{2}$ mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020.
0

Projected sensitivity of the SuperCDMS SNOLAB experiment

R. Agnese et al.Apr 7, 2017
SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/c$^2$) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10$^{-43}$ cm$^2$ for a dark matter particle mass of 1 GeV/c$^2$, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced $^{3}$H and naturally occurring $^{32}$Si will be present in the detectors at some level. Even if these backgrounds are x10 higher than expected, the science reach of the HV detectors would be over three orders of magnitude beyond current results for a dark matter mass of 1 GeV/c$^2$. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particle masses (> 5 GeV/c$^2$). The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the "neutrino floor", where coherent scatters of solar neutrinos become a limiting background.
Load More