AS
Albert Sneppen
Author with expertise in High-Energy Astrophysics and Particle Acceleration Studies
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
251
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

COSMOS2020: A Panchromatic View of the Universe to z ∼ 10 from Two Complementary Catalogs

John Weaver et al.Jan 1, 2022
Abstract The Cosmic Evolution Survey (COSMOS) has become a cornerstone of extragalactic astronomy. Since the last public catalog in 2015, a wealth of new imaging and spectroscopic data have been collected in the COSMOS field. This paper describes the collection, processing, and analysis of these new imaging data to produce a new reference photometric redshift catalog. Source detection and multiwavelength photometry are performed for 1.7 million sources across the 2 deg 2 of the COSMOS field, ∼966,000 of which are measured with all available broadband data using both traditional aperture photometric methods and a new profile-fitting photometric extraction tool, The Farmer , which we have developed. A detailed comparison of the two resulting photometric catalogs is presented. Photometric redshifts are computed for all sources in each catalog utilizing two independent photometric redshift codes. Finally, a comparison is made between the performance of the photometric methodologies and of the redshift codes to demonstrate an exceptional degree of self-consistency in the resulting photometric redshifts. The i < 21 sources have subpercent photometric redshift accuracy and even the faintest sources at 25 < i < 27 reach a precision of 5%. Finally, these results are discussed in the context of previous, current, and future surveys in the COSMOS field. Compared to COSMOS2015, it reaches the same photometric redshift precision at almost one magnitude deeper. Both photometric catalogs and their photometric redshift solutions and physical parameters will be made available through the usual astronomical archive systems (ESO Phase 3, IPAC-IRSA, and CDS).
0

Emergence hour-by-hour of features in the kilonova AT2017gfo

Albert Sneppen et al.Jul 23, 2024
The spectral features in the optical/near-infrared counterparts of neutron star mergers (kilonovae, KNe) evolve dramatically on hourly timescales. To examine the spectral evolution, we compiled a temporal series that was complete at all observed epochs from 0.5 to 9.4\,days of the best optical/near-infrared (NIR) spectra of the gravitational-wave detected kilonova AT2017gfo. Using our analysis of this spectral series, we show that the emergence times of spectral features place strong constraints on line identifications and ejecta properties, while their subsequent evolution probes the structure of the ejecta. We find that the most prominent spectral feature, the 1\ P Cygni line, appears suddenly, with the earliest detection at 1.17\,days. We find evidence in this earliest feature for the fastest yet discovered kilonova ejecta component at 0.40--0.45$c$. Across the observed epochs and wavelengths, the velocities of the line-forming regions span nearly an order of magnitude, down to as low as 0.04--0.07$c$. The time of emergence closely follows the predictions for because combines rapidly under local thermal equilibrium (LTE) conditions. The transition time between the doubly and singly ionised states provides the first direct measurement of the ionisation temperature. This temperature is highly consistent with the temperature of the emitted blackbody radiation field at a level of a few percent. Furthermore, we find the KN to be isotropic in temperature, that is, the polar and equatorial ejecta differ by less than a few hundred Kelvin or \( 5\)<!PCT!>, in the first few days post-merger based on measurements of the reverberation time-delay effect. This suggests that a model with very simple assumptions, with single-temperature LTE conditions, reproduces the early kilonova properties surprisingly well.
0

Rapid kilonova evolution: Recombination and reverberation effects

Albert Sneppen et al.May 29, 2024
Kilonovae (KNe) are one of the fastest types of optical transients known, cooling rapidly in the first few days following their neutron-star merger origin. We show here that KN spectral features go through rapid recombination transitions, with features due to elements in the new ionisation state emerging quickly. Due to time-delay effects of the rapidly expanding KN, a ‘wave’ of these new features passing though the ejecta should be a detectable phenomenon. In particular, isolated line features will emerge as blueshifted absorption features first, gradually evolving into P Cygni features and then pure emission features. In this analysis, we present the evolution of individual exposures of the KN AT2017gfo observed with VLT/X-shooter, which together comprise X-shooter’s first epoch spectrum (1.43 days post-merger). The spectra of these ‘sub-epochs’ show a significant evolution across the roughly one hour of observations, including a decrease in the blackbody temperature and photospheric velocity. The early cooling is even more rapid than that inferred from later photospheric epochs and suggests that a fixed power-law relation between the temperature and time does not describe the data. The cooling constrains the recombination wave, where a Sr II interpretation of the AT2017gfo ∼1 μm feature predicts both a specific timing for the feature emergence and its early spectral shape, including the very weak emission component observed at about 1.43 days. This empirically indicates a strong correspondence between the radiation temperature of the blackbody and the ejecta’s electron temperature. Furthermore, this reverberation analysis suggests that temporal modelling is important for interpreting individual spectra and that higher-cadence spectral series, especially when concentrated at specific times, can provide strong constraints on KN line identifications and the ejecta physics. Given the use of such short-timescale information, we lay out improved observing strategies for future KN monitoring.