JK
Jae‐Hyeon Ko
Author with expertise in Lead-free Piezoelectric Materials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
884
h-index:
31
/
i10-index:
107
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Enhanced Nanoscale Friction on Fluorinated Graphene

Sangku Kwon et al.Jun 21, 2012
Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene.
0

0.98(K0.5Na0.5)NbO3–0.02(Bi0.5Na0.5)(Zr0.85Sn0.15)O3 Single Crystals Grown by the Seed-Free Solid-State Crystal Growth Method and Their Characterization

Eugenie Uwiragiye et al.Jun 21, 2024
(K0.5Na0.5)NbO3-based single crystals are of interest as high-performance lead-free piezoelectric materials, but conventional crystal growth methods have some disadvantages such as the requirement for expensive Pt crucibles and difficulty in controlling the composition of the crystals. Recently, (K0.5Na0.5)NbO3-based single crystals have been grown by the seed-free solid-state crystal growth method, which can avoid these problems. In the present work, 0.98(K0.5Na0.5)NbO3–0.02(Bi0.5Na0.5)(Zr0.85Sn0.15)O3 single crystals were grown by the seed-free solid-state crystal growth method. Sintering aids of 0.15 mol% Li2CO3 and 0.15 mol% Bi2O3 were added to promote single crystal growth. Pellets were sintered at 1150 °C for 15–50 h. Single crystals started to appear from 20 h. The single crystals grown for 50 h were studied in detail. Single crystal microstructure was studied by scanning electron microscopy of the as-grown surface and cross-section of the sample and revealed porosity in the crystals. Electron probe microanalysis indicated a slight reduction in K and Na content of a single crystal as compared to the nominal composition. X-ray diffraction shows that the single crystals contain mixed orthorhombic and tetragonal phases at room temperature. Raman scattering and impedance spectroscopy at different temperatures observed rhombohedral–orthorhombic, orthorhombic–tetragonal and tetragonal–cubic phase transitions. Polarization–electric field (P–E) hysteresis loops show that the single crystal is a normal ferroelectric material with a remanent polarization (Pr) of 18.5 μC/cm2 and a coercive electrical field (Ec) of 10.7 kV/cm. A single crystal presents d33 = 362 pC/N as measured by a d33 meter. Such a single crystal with a large d33 and high Curie temperature (~370 °C) can be a promising candidate for piezoelectric devices.