SH
Sanwei Hao
Author with expertise in Conducting Polymer Research
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(0% Open Access)
Cited by:
418
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Engineering Self-Adhesive Polyzwitterionic Hydrogel Electrolytes for Flexible Zinc-Ion Hybrid Capacitors with Superior Low-Temperature Adaptability

Qingjin Fu et al.Nov 5, 2021
Flexible zinc-ion hybrid capacitors (ZIHCs) based on hydrogel electrolytes are an up-and-coming and highly promising candidate for potential large-scale energy storage due to their combined complementary advantages of zinc batteries and capacitors. However, the freezing induces a sharp drop in conductivity and mechanical property with tremendous compromise of the interfacial adhesion, thereby severely impeding the low-temperature application of such flexible ZIHCs. To achieve the flexible ZIHCs with excellent low-temperature adaptability, an antifreezing and self-adhesive polyzwitterionic hydrogel electrolyte (PZHE) is engineered via a self-catalytic nano-reinforced strategy, affording unparalleled conductivity and robust interfacial adhesion, together with superhigh mechanical strength over a broad temperature ranging from 25 to -60 °C. Meanwhile, the water-in-salt-type PZHE filled with ZnCl2 can provide ion migration channels to enhance the reversibility of Zn metal electrodes, thus greatly reducing side reactions and extending the cycling life. With distinctive integrated merits of the water-in-salt type PZHE, the as-built ZIHCs deliver a high-level energy density of 80.5 Wh kg-1, a desired specific capacity of 81.5 mAh g-1, along with a long-duration cycling lifespan (100 000 cycles) with 84.6% capacity retention at -40 °C, even outperforming the state-of-the-art ZIHCs at room temperature. More encouragingly, the extraordinary temperature-adaptability for both electrochemical and mechanical performance under severe mechanical challenges is achieved for the flexible ZIHCs at extremely low temperature. Noticeably, the ZIHC is also capable of operating in an ice-water bath and vacuum. It is believed that this strategy makes contributions to inspire the design and application of high-performance PZHEs in fields of flexible and wearable electronics that can work in extremely cold environments.
0

Tannic Acid–Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties

Sanwei Hao et al.Dec 3, 2020
The application of conductive hydrogels in intelligent biomimetic electronics is a hot topic in recent years, but it is still a great challenge to develop the conductive hydrogels through a rapid fabrication process at ambient temperature. In this work, a versatile poly(acrylamide) @cellulose nanocrystal/tannic acid–silver nanocomposite (NC) hydrogel integrated with excellent stretchability, repeatable self-adhesion, high strain sensitivity, and antibacterial property, was synthesized via radical polymerization within 30 s at ambient temperature. Notably, this rapid polymerization was realized through a tannic acid–silver (TA-Ag) mediated dynamic catalysis system that was capable of activating ammonium persulfate and then initiated the free-radical polymerization of the acrylamide monomer. Benefiting from the incorporation of TA-Ag metal ion nanocomplexes and cellulose nanocrystals, which acted as dynamic connecting bridges by hydrogen bonds to efficiently dissipate energy, the obtained NC hydrogels exhibited prominent tensile strain (up to 4000%), flexibility, self-recovery, and antifatigue properties. In addition, the hydrogels showed repeatable adhesiveness to different substrates (e.g., glass, wood, bone, metal, and skin) and significant antibacterial properties, which were merits for the hydrogels to be assembled into a flexible epidermal sensor for long-term human–machine interfacial contact without concerns about the use of external adhesive tapes and bacterial breeding. Moreover, the remarkable conductivity (σ ∼ 5.6 ms cm–1) and strain sensitivity (gauge factor = 1.02) allowed the flexible epidermal sensors to monitor various human motions in real time, including huge movement of deformations (e.g., wrist, elbow, neck, shoulder) and subtle motions. It is envisioned that this work would provide a promising strategy for the rapid preparation of conductive hydrogels in the application of flexible electronic skin, biomedical devices, and soft robotics.
0

Lignin Powered Versatile Bioelastomer: A Universal Medium for Smart Photothermal Conversion

Zhiwen Sun et al.May 31, 2024
Abstract Photothermal elastomers are recognized as smart flexible materials that can rapidly and effectively convert light energy into heat energy. However, there has been a lack of adequate focus on tackling the sustainability challenges of photothermal elastomers, particularly in terms of material selection, the integration of complex functionalities, and final disposal. A fully bio‐derived photothermal elastomer (BPTE) produced through a simple and chemical‐free approach is introduced, utilizing alkali lignin, lipoic acid, and phytic acid as bio‐derived feedstocks. The BPTE exhibits an adaptive polymeric network crosslinked by dynamic covalent disulfide bonds and multiple hydrogen bonds, endowing it with dual‐mode photothermal conversion capability, robustness, stretchability, rapidly self‐healing property, hydrophobicity, swelling resistance, self‐adhesion, full recyclability, and degradability. The BPTE is further demonstrated as a next‐generation solution for photothermal generators, light‐driven actuators, photothermal antibacterial dressings, and photothermal fibers. The versatility of BPTE opens avenues for innovative smart devices and systems with significant potential in energy conversion, soft robotics, medical treatment, and smart clothing. With outstanding photothermal performances, full recyclability, and biodegradability, these fully bio‐based elastomers present an attractive prospect for the development of the advanced smart photothermal products.
0

One-pot molten strategy to synthesize tough bio-derived lignin-based photothermal elastomers for photoelectric driven and programmable shape memory

Zhiwen Sun et al.Jun 18, 2024
Utilizing renewable biomass as an alternative to petroleum-based products for the development of smart materials emerges as a pivotal strategy for sustainable development. However, the straightforward, rapid, and cost-effective deployment of biomass for novel smart material synthesis remains a formidable challenge. Herein, we employ a facile solvent-free one-pot strategy to develop a multifunctional smart biomass photothermal elastomer, which synthesized from the natural small molecule of α-lipoic acid (LA) and renewable lignin biopolymer without any chemical modification. The incorporation of lignin confers to the obtained elastomers superior mechanical strength, photothermal responsiveness, photothermal self-healing, and adhesive capabilities. Notably, the photothermal elastomers can be fully recycled and reused by simple thermal remodeling. As a proof of concept, the temperature difference generator can be driven to generate electricity utilizing the excellent photothermal effect of elastomers, highlighting its excellent light-heat-electricity conversion capability. Intriguingly, the photothermal elastomers exhibit light-driven shape memory effect, enabling to grasp objects by shape-programmed four-arm soft gripper under selective irradiation. This pioneering work not only demonstrates significant progress in high-value utilization of bio-derived lignin, but also opens up a new avenue for sustainable and innovative applications in advanced energy management devices and soft actuators.