High-risk antibiotic-resistant bacteria (ARB) and their accompanying antibiotic resistance genes (ARGs) seriously threaten public health. As a crucial medium for ARB and ARGs spread, soils with biogas slurry have been widely investigated. However, few studies focused on high-risk multi-drug resistant bacteria (MDRB) and their associated ARGs. This study examined ARB distribution in different agricultural soils with biogas slurry across 12 districts in China. It identified high-risk MDRB in various soil backgrounds, elucidating their resistance and spread mechanism. The findings revealed that diverse cultured ARB were enriched in soils with biogas slurry, especially soil ciprofloxacin ARB, which were enriched (>2.5 times) in 68.4 % of sampling sites. Four high-risk MDRB isolated from Hebei, Zhejiang, Shanxi, and Gansu districts were identified as severe or opportunistic pathogens, which carried abundant mobile genetic elements (MGEs) and 14 known high risk ARGs, including aac(3)-IId, aac(6')-Ib3, aph(6)-Id, aac(6')-Ib3, aadA1, blaOXA-10, blaTEM-1B, dfrA12, dfrA14, cmlA1, sul1, floR, tet(M) and tet(L). The antibiotics accumulation, diverse ARGs and MGEs enrichment, and proliferation of pathogenic bacteria could be potential driving factors of their occurrence and spread. Therefore, the coexistence of the high-risk MDRB and ARGs combined with the associated MGEs in soils with biogas slurry should be further investigated to develop technology and policy for reducing their negative influences on the effectiveness of clinical antibiotics.