ZK
Zaven Kachaturian
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
1,193
h-index:
30
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease

Steven Potkin et al.Sep 10, 2015
To compare the diagnostic accuracy of CSF biomarkers and amyloid PET for diagnosing early-stage Alzheimer disease (AD).From the prospective, longitudinal BioFINDER study, we included 122 healthy elderly and 34 patients with mild cognitive impairment who developed AD dementia within 3 years (MCI-AD). β-Amyloid (Aβ) deposition in 9 brain regions was examined with [18F]-flutemetamol PET. CSF was analyzed with INNOTEST and EUROIMMUN ELISAs. The results were replicated in 146 controls and 64 patients with MCI-AD from the Alzheimer's Disease Neuroimaging Initiative study.The best CSF measures for identifying MCI-AD were Aβ42/total tau (t-tau) and Aβ42/hyperphosphorylated tau (p-tau) (area under the curve [AUC] 0.93-0.94). The best PET measures performed similarly (AUC 0.92-0.93; anterior cingulate, posterior cingulate/precuneus, and global neocortical uptake). CSF Aβ42/t-tau and Aβ42/p-tau performed better than CSF Aβ42 and Aβ42/40 (AUC difference 0.03-0.12, p<0.05). Using nonoptimized cutoffs, CSF Aβ42/t-tau had the highest accuracy of all CSF/PET biomarkers (sensitivity 97%, specificity 83%). The combination of CSF and PET was not better than using either biomarker separately.Amyloid PET and CSF biomarkers can identify early AD with high accuracy. There were no differences between the best CSF and PET measures and no improvement when combining them. Regional PET measures were not better than assessing the global Aβ deposition. The results were replicated in an independent cohort using another CSF assay and PET tracer. The choice between CSF and amyloid PET biomarkers for identifying early AD can be based on availability, costs, and doctor/patient preferences since both have equally high diagnostic accuracy.This study provides Class III evidence that amyloid PET and CSF biomarkers identify early-stage AD equally accurately.
0

Towards cascading genetic risk in Alzheimer’s disease

André Altmann et al.May 30, 2024
Abstract Alzheimer’s disease typically progresses in stages, which have been defined by the presence of disease-specific biomarkers: amyloid (A), tau (T) and neurodegeneration (N). This progression of biomarkers has been condensed into the ATN framework, in which each of the biomarkers can be either positive (+) or negative (−). Over the past decades, genome-wide association studies have implicated ∼90 different loci involved with the development of late-onset Alzheimer’s disease. Here, we investigate whether genetic risk for Alzheimer’s disease contributes equally to the progression in different disease stages or whether it exhibits a stage-dependent effect. Amyloid (A) and tau (T) status was defined using a combination of available PET and CSF biomarkers in the Alzheimer’s Disease Neuroimaging Initiative cohort. In 312 participants with biomarker-confirmed A−T− status, we used Cox proportional hazards models to estimate the contribution of APOE and polygenic risk scores (beyond APOE) to convert to A+T− status (65 conversions). Furthermore, we repeated the analysis in 290 participants with A+T− status and investigated the genetic contribution to conversion to A+T+ (45 conversions). Both survival analyses were adjusted for age, sex and years of education. For progression from A−T− to A+T−, APOE-e4 burden showed a significant effect [hazard ratio (HR) = 2.88; 95% confidence interval (CI): 1.70–4.89; P &lt; 0.001], whereas polygenic risk did not (HR = 1.09; 95% CI: 0.84–1.42; P = 0.53). Conversely, for the transition from A+T− to A+T+, the contribution of APOE-e4 burden was reduced (HR = 1.62; 95% CI: 1.05–2.51; P = 0.031), whereas the polygenic risk showed an increased contribution (HR = 1.73; 95% CI: 1.27–2.36; P &lt; 0.001). The marginal APOE effect was driven by e4 homozygotes (HR = 2.58; 95% CI: 1.05–6.35; P = 0.039) as opposed to e4 heterozygotes (HR = 1.74; 95% CI: 0.87–3.49; P = 0.12). The genetic risk for late-onset Alzheimer’s disease unfolds in a disease stage-dependent fashion. A better understanding of the interplay between disease stage and genetic risk can lead to a more mechanistic understanding of the transition between ATN stages and a better understanding of the molecular processes leading to Alzheimer’s disease, in addition to opening therapeutic windows for targeted interventions.