DW
D. Watson
Author with expertise in Gamma-Ray Bursts and Supernovae Connections
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(85% Open Access)
Cited by:
6,495
h-index:
69
/
i10-index:
179
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger

E. Pian et al.Oct 16, 2017
The merger of two neutron stars is predicted to give rise to three major detectable phenomena: a short burst of gamma-rays, a gravitational wave signal, and a transient optical/near-infrared source powered by the synthesis of large amounts of very heavy elements via rapid neutron capture (the r-process). Such transients, named "macronovae" or "kilonovae", are believed to be centres of production of rare elements such as gold and platinum. The most compelling evidence so far for a kilonova was a very faint near-infrared rebrightening in the afterglow of a short gamma-ray burst at z = 0.356, although findings indicating bluer events have been reported. Here we report the spectral identification and describe the physical properties of a bright kilonova associated with the gravitational wave source GW 170817 and gamma-ray burst GRB 170817A associated with a galaxy at a distance of 40 Mpc from Earth. Using a series of spectra from ground-based observatories covering the wavelength range from the ultraviolet to the near-infrared, we find that the kilonova is characterized by rapidly expanding ejecta with spectral features similar to those predicted by current models. The ejecta is optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of about 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions. Comparison with spectral models suggests that the merger ejected 0.03-0.05 solar masses of material, including high-opacity lanthanides.
0

The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars

N. Tanvir et al.Oct 16, 2017
Abstract We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a “kilonova/macronova” powered by the radioactive decay of massive neutron-rich nuclides created via r -process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infrared  K s -band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r -process peak (atomic masses  A ≈ 195 ). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major—if not the dominant—site of rapid neutron capture nucleosynthesis in the universe.
0

A γ-ray burst at a redshift of z ≈ 8.2

N. Tanvir et al.Oct 1, 2009
Two groups present redshift determinations and other spectroscopic data for the γ-ray burst GRB 090423 — now the earliest and most distant astronomical object known. Salvaterra et al. report its initial detection with the Swift satellite on 23 April 2009, and a redshift determination with the Telescopio Nazionale Galileo on La Palma 14 hours after the burst, obtaining z ≈ 8.1. Tanvir et al. used the United Kingdom Infrared Telescope, Hawaii, from about 20 minutes after the burst and arrive at z ≈ 8.2. The previous highest redshift known for any object was z = 6.96 for a Lyman-α emitting galaxy. These measurements imply that massive stars were being produced and were dying as γ-ray bursts as early as about 600 million years after the Big Bang, and that their properties are very similar to those stars producing γ-ray bursts 10 billion years later. Long-duration γ-ray bursts (GRBs), thought to result from the explosions of certain massive stars, are bright enough that some of them should be observable out to redshifts of z > 20. So far, the highest redshift measured for any object has been z = 6.96, for a Lyman-α emitting galaxy. Here, and in an accompanying paper, GRB 090423 is reported to lie at a redshift of z ≈ 8.2, implying that massive stars were being produced and dying as GRBs approximately 620 million years after the Big Bang. Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars1, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology2,3,4. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy5. Here we report that GRB 090423 lies at a redshift of z ≈ 8.2, implying that massive stars were being produced and dying as GRBs ∼630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.
0

The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts

D. Fox et al.Oct 1, 2005
The final chapter in the long-standing mystery of the γ-ray bursts (GRBs) centres on the origin of the short-hard class of bursts, which are suspected on theoretical grounds to result from the coalescence of neutron-star or black-hole binary systems. Numerous searches for the afterglows of short-hard bursts have been made, galvanized by the revolution in our understanding of long-duration GRBs that followed the discovery in 1997 of their broadband (X-ray, optical and radio) afterglow emission. Here we present the discovery of the X-ray afterglow of a short-hard burst, GRB 050709, whose accurate position allows us to associate it unambiguously with a star-forming galaxy at redshift z = 0.160, and whose optical lightcurve definitively excludes a supernova association. Together with results from three other recent short-hard bursts, this suggests that short-hard bursts release much less energy than the long-duration GRBs. Models requiring young stellar populations, such as magnetars and collapsars, are ruled out, while coalescing degenerate binaries remain the most promising progenitor candidates. Gamma-ray bursts (GRBs) are either ‘long and soft’, or ‘short and hard’. The long-duration type leave a strong afterglow and have been extensively studied. So we have a good idea of what causes them: explosions of massive stars in distant star-forming galaxies. Short GRBs, with no strong afterglow, were harder to pin down. The Swift satellite, launched last November, is designed to study bursts as soon as they happen. Having shown its worth with long GRBs (reported in the 18 August issue of Nature), Swift has now bagged a short burst, GRB 050509B, precisely measured its location and detected the X-ray afterglow. Four papers this week report on this and another recent short burst. Now, over 20 years after they were first recognized, the likely origin of the short GRBs is revealed as a merger between neutron stars of a binary system and the instantaneous production of a black hole.
0

No supernovae associated with two long-duration γ-ray bursts

J. Fynbo et al.Dec 1, 2006
The tidy classification system that divided γ-ray bursts (GRBs) into long-duration busts (lasting more than two seconds) and short may have had its day. The final nail in its coffin may be GRB 060614. Discovered on 14 June 2006 by the Burst Alert Telescope on-board the Swift satellite, this burst was long, at 102 seconds, but as reported in a clutch of papers in this issue, it has a number of properties, including the absence of an accompanying supernova, that were previously considered diagnostic of a 'short' GRB. The hunt is now on for a classification system to take account of the diversity now apparent in GRBs. In the accompanying News & Views, Bing Zhang suggests that the answer may be to adopt a Type I/Type II classification similar to that used for supernovae. GRB 060505 and GRB 060614 were not accompanied by supernova emission down to limits hundreds of times fainter than the archetypal SN 1998bw that accompanied GRB 980425, and fainter than any type Ic supernova ever observed. It is now accepted that long-duration γ-ray bursts (GRBs) are produced during the collapse of a massive star1,2. The standard ‘collapsar’ model3 predicts that a broad-lined and luminous type Ic core-collapse supernova accompanies every long-duration GRB4. This association has been confirmed in observations of several nearby GRBs5–9. Here we report that GRB 060505 (ref. 10) and GRB 060614 (ref. 11) were not accompanied by supernova emission down to limits hundreds of times fainter than the archetypal supernova SN 1998bw that accompanied GRB 980425, and fainter than any type Ic supernova ever observed12. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration and show that the bursts originated in actively star-forming regions. The absence of a supernova to such deep limits is qualitatively different from all previous nearby long-duration GRBs and suggests a new phenomenological type of massive stellar death.
0

Identification of strontium in the merger of two neutron stars

D. Watson et al.Oct 23, 2019
Half of all of the elements in the Universe that are heavier than iron were created by rapid neutron capture. The theory underlying this astrophysical r-process was worked out six decades ago, and requires an enormous neutron flux to make the bulk of the elements1. Where this happens is still debated2. A key piece of evidence would be the discovery of freshly synthesized r-process elements in an astrophysical site. Existing models3-5 and circumstantial evidence6 point to neutron-star mergers as a probable r-process site; the optical/infrared transient known as a 'kilonova' that emerges in the days after a merger is a likely place to detect the spectral signatures of newly created neutron-capture elements7-9. The kilonova AT2017gfo-which was found following the discovery of the neutron-star merger GW170817 by gravitational-wave detectors10-was the first kilonova for which detailed spectra were recorded. When these spectra were first reported11,12, it was argued that they were broadly consistent with an outflow of radioactive heavy elements; however, there was no robust identification of any one element. Here we report the identification of the neutron-capture element strontium in a reanalysis of these spectra. The detection of a neutron-capture element associated with the collision of two extreme-density stars establishes the origin of r-process elements in neutron-star mergers, and shows that neutron stars are made of neutron-rich matter13.
0

A dusty, normal galaxy in the epoch of reionization

D. Watson et al.Mar 1, 2015
Candidates for the modest galaxies that formed most of the stars in the early universe, at redshifts $z > 7$, have been found in large numbers with extremely deep restframe-UV imaging. But it has proved difficult for existing spectrographs to characterise them in the UV. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant UV-selected galaxy detected in dust emission is only at $z = 3.25$, and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at this early epoch. Here we report thermal dust emission from an archetypal early universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be $z = 7.5\pm0.2$ from a spectroscopic detection of the Lyα break. A1689-zD1 is representative of the star-forming population during reionisation, with a total star-formation rate of about 12M$_\odot$ yr$^{-1}$. The galaxy is highly evolved: it has a large stellar mass, and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at $z > 7$, in spite of the very short time since they first appeared.
0
Citation330
0
Save
0

LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914

B. Abbott et al.Jul 20, 2016
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.
0

THE AFTERGLOWS OFSWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFTANDSWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS

Д. Канн et al.Aug 23, 2010
We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to September 2009, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in an earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z=1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, is weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) are very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at one day after the GRB in the z=1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without reveals no indication that the former are statistically significantly more luminous. (abridged)
0

LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS

J. Fynbo et al.Nov 30, 2009
(Abridged). We present a sample of 77 optical afterglows (OAs) of Swift detected GRBs for which spectroscopic follow-up observations have been secured. We provide linelists and equivalent widths for all detected lines redward of Ly-alpha. We discuss to what extent the current sample of Swift bursts with OA spectroscopy is a biased subsample of all Swift detected GRBs. For that purpose we define an X-ray selected sample of Swift bursts with optimal conditions for ground-based follow up from the period March 2005 to September 2008; 146 bursts fulfill our sample criteria. We derive the redshift distribution for this sample and conclude that less than 19% of Swift bursts are at z>7. We compare the high energy properties for three sub-samples of bursts in the sample: i) bursts with redshifts measured from OA spectroscopy, ii) bursts with detected OA, but no OA-based redshift, and iii) bursts with no detection of the OA. The bursts in group i) have significantly less excess X-ray absorption than bursts in the other two groups. In addition, the fraction of dark bursts is 14% in group i), 38% in group ii) and > 39% in group iii). From this we conclude that the sample of GRBs with OA spectroscopy is not representative for all Swift bursts, most likely due to a bias against the most dusty sight-lines. Finally, we characterize GRB absorption systems as a class and compare them to QSO absorption systems, in particular DLAs. On average GRB absorbers are characterized by significantly stronger EWs for HI as well as for both low and high ionization metal lines than what is seen in intervening QSO absorbers. Based on the z>2 bursts in the sample we place a 95% confidence upper limit of 7.5% on the mean escape fraction of ionizing photons from star-forming galaxies.
Load More