AF
Andreas Faisst
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(58% Open Access)
Cited by:
779
h-index:
42
/
i10-index:
91
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The COSMOS2015 galaxy stellar mass function

I. Davidzon et al.Sep 1, 2017
We measure the stellar mass function (SMF) and stellar mass density of galaxies in the COSMOS field up to z ~ 6. We select them in the near-IR bands of the COSMOS2015 catalogue, which includes ultra-deep photometry from UltraVISTA-DR2, SPLASH, and Subaru/Hyper Suprime-Cam. At z > 2.5 we use new precise photometric redshifts with error σ z = 0.03(1 + z ) and an outlier fraction of 12%, estimated by means of the unique spectroscopic sample of COSMOS (~100 000 spectroscopic measurements in total, more than one thousand having robust z spec > 2.5). The increased exposure time in the DR2, along with our panchromatic detection strategy, allow us to improve the completeness at high z with respect to previous UltraVISTA catalogues (e.g. our sample is >75% complete at 10 10 ℳ ⊙ and z = 5). We also identify passive galaxies through a robust colour–colour selection, extending their SMF estimate up to z = 4. Our work provides a comprehensive view of galaxy-stellar-mass assembly between z = 0.1 and 6, for the first time using consistent estimates across the entire redshift range. We fit these measurements with a Schechter function, correcting for Eddington bias. We compare the SMF fit with the halo mass function predicted from ΛCDM simulations, finding that at z > 3 both functions decline with a similar slope in thehigh-mass end. This feature could be explained assuming that mechanisms quenching star formation in massive haloes become less effective at high redshifts; however further work needs to be done to confirm this scenario. Concerning the SMF low-mass end, it shows a progressive steepening as it moves towards higher redshifts, with α decreasing from -1.47 +0.02 -0.02 at z ≃ 0.1 to -2.11 +0.30 -0.13 at z ≃ 5. This slope depends on the characterisation of the observational uncertainties, which is crucial to properly remove the Eddington bias. We show that there is currently no consensus on the method to quantify such errors: different error models result in different best-fit Schechter parameters.
0

COSMOS2020: A Panchromatic View of the Universe to z ∼ 10 from Two Complementary Catalogs

John Weaver et al.Jan 1, 2022
Abstract The Cosmic Evolution Survey (COSMOS) has become a cornerstone of extragalactic astronomy. Since the last public catalog in 2015, a wealth of new imaging and spectroscopic data have been collected in the COSMOS field. This paper describes the collection, processing, and analysis of these new imaging data to produce a new reference photometric redshift catalog. Source detection and multiwavelength photometry are performed for 1.7 million sources across the 2 deg 2 of the COSMOS field, ∼966,000 of which are measured with all available broadband data using both traditional aperture photometric methods and a new profile-fitting photometric extraction tool, The Farmer , which we have developed. A detailed comparison of the two resulting photometric catalogs is presented. Photometric redshifts are computed for all sources in each catalog utilizing two independent photometric redshift codes. Finally, a comparison is made between the performance of the photometric methodologies and of the redshift codes to demonstrate an exceptional degree of self-consistency in the resulting photometric redshifts. The i < 21 sources have subpercent photometric redshift accuracy and even the faintest sources at 25 < i < 27 reach a precision of 5%. Finally, these results are discussed in the context of previous, current, and future surveys in the COSMOS field. Compared to COSMOS2015, it reaches the same photometric redshift precision at almost one magnitude deeper. Both photometric catalogs and their photometric redshift solutions and physical parameters will be made available through the usual astronomical archive systems (ESO Phase 3, IPAC-IRSA, and CDS).
0

The ALPINE-ALMA [CII] survey: Data processing, catalogs, and statistical source properties

M. Béthermin et al.Jun 17, 2020
The ALPINE-ALMA large program targets the [CII] 158 $\mu$m line and the far-infrared continuum in 118 spectroscopically confirmed star-forming galaxies between z=4.4 and z=5.9. It represents the first large [CII] statistical sample built in this redshift range. We present details of the data processing and the construction of the catalogs. We detected 23 of our targets in the continuum. To derive accurate infrared luminosities and obscured star formation rates, we measured the conversion factor from the ALMA 158 $\mu$m rest-frame dust continuum luminosity to the total infrared luminosity (L$_{\rm IR}$) after constraining the dust spectral energy distribution by stacking a photometric sample similar to ALPINE in ancillary single-dish far-infrared data. We found that our continuum detections have a median L$_{\rm IR}$ of 4.4$\times 10^{11}$ L$_\odot$. We also detected 57 additional continuum sources in our ALMA pointings. They are at lower redshift than the ALPINE targets, with a mean photometric redshift of 2.5$\pm$0.2. We measured the 850 $\mu$m number counts between 0.35 and 3.5 mJy, improving the current interferometric constraints in this flux density range. We found a slope break in the number counts around 3 mJy with a shallower slope below this value. More than 40 % of the cosmic infrared background is emitted by sources brighter than 0.35 mJy. Finally, we detected the [CII] line in 75 of our targets. Their median [CII] luminosity is 4.8$\times$10$^8$ L$_\odot$ and their median full width at half maximum is 252 km/s. After measuring the mean obscured SFR in various [CII] luminosity bins by stacking ALPINE continuum data, we find a good agreement between our data and the local and predicted SFR-L$_{\rm [CII]}$ relations of De Looze et al. (2014) and Lagache et al. (2018).
0

JWST and ALMA Discern the Assembly of Structural and Obscured Components in a High-redshift Starburst Galaxy

Zhaoxuan Liu et al.Jun 1, 2024
Abstract We present observations and analysis of the starburst PACS-819 at z = 1.45 ( M * = 10 10.7 M ⊙ ), using high-resolution (0.″1; 0.8 kpc) Atacama Large Millimeter/submillimeter Array (ALMA) and multiwavelength JWST images from the COSMOS-Web program. Dissimilar to Hubble Space Telescope (HST) ACS images in the rest-frame UV, the redder NIRCam and MIRI images reveal a smooth central mass concentration and spiral-like features, atypical for such an intense starburst. Through dynamical modeling of the CO ( J = 5–4) emission with ALMA, PACS-819 is rotation dominated and thus consistent with having a disk-like nature. However, kinematic anomalies in CO and asymmetric features in the bluer JWST bands (e.g., F150W) support a more disturbed nature likely due to interactions. The JWST imaging further enables us to map the distribution of stellar mass and dust attenuation, thus clarifying the relationships between different structural components not discernible in the previous HST images. The CO ( J = 5–4) and far-infrared dust continuum emission are cospatial with a heavily obscured starbursting core (<1 kpc) that is partially surrounded by much less obscured star-forming structures including a prominent arc, possibly a tidally distorted dwarf galaxy, and a massive clump (detected in CO), likely a recently accreted low-mass satellite. With spatially resolved maps, we find a high molecular gas fraction in the central area reaching ∼3 ( M gas / M * ) and short depletion times ( M gas /SFR ∼ 120 Myr, where SFR is star formation rate) across the entire system. These observations provide insights into the complex nature of starbursts in the distant Universe and underscore the wealth of complementary information from high-resolution observations with both ALMA and JWST.
0

The ALPINE-ALMA [C ii] survey: Characterisation of spatial offsets in main-sequence galaxies at z ∼ 4–6

Meghana Killi et al.May 30, 2024
ABSTRACT The morphology of galaxies is shaped by stellar activity, feedback, gas and dust properties, and interactions with surroundings, and can therefore provide insight into these processes. In this paper, we study the spatial offsets between stellar and interstellar medium emission in a sample of 54 main-sequence star-forming galaxies at z ∼ 4–6 observed with the Atacama Large Millimeter/submillimeter Array (ALMA), and drawn from the ALMA Large Program to INvestigate C+ at Early times (ALPINE). We find no significant spatial offset for the majority (∼70 per cent) of galaxies in the sample among any combination of [C ii], far-infrared continuum, optical, and ultraviolet emission. However, a fraction of the sample (∼30 per cent) shows offsets larger than the median by more than 3σ significance (compared to the uncertainty on the offsets), especially between [C ii] and ultraviolet emission. We find that these significant offsets are of the order of ∼0.5–0.7 arcsec, corresponding to ∼3.5–4.5 kiloparsecs. The offsets could be caused by a complex dust geometry, strong feedback from stars and active galactic nuclei, large-scale gas inflow and outflow, or a combination of these phenomena. However, our current analysis does not definitively constrain the origin. Future, higher resolution ALMA and JWST observations may help resolve the ambiguity. Regardless, since there exist at least some galaxies that display such large offsets, galaxy models and spectral energy distribution fitting codes cannot assume co-spatial emission in all main-sequence galaxies, and must take into account that the observed emission across wavelengths may be spatially segregated.
0
Citation2
0
Save
0

The Web Epoch of Reionization Lyα Survey (WERLS). I. MOSFIRE Spectroscopy of z ∼ 7–8 Lyα Emitters*

Olivia Cooper et al.Jul 1, 2024
Abstract We present the first results from the Web Epoch of Reionization Ly α Survey (WERLS), a spectroscopic survey of Ly α emission using Keck I/MOSFIRE and LRIS. WERLS targets bright ( J < 26) galaxy candidates with photometric redshifts of 5.5 ≲ z ≲ 8 selected from pre-JWST imaging embedded in the Epoch of Reionization (EoR) within three JWST deep fields: CEERS, PRIMER, and COSMOS-Web. Here, we report 11 z ∼ 7–8 Ly α emitters (LAEs; three secure and eight tentative candidates) detected in the first five nights of WERLS MOSFIRE data. We estimate our observed LAE yield is ∼13%, which is broadly consistent with expectations assuming some loss from redshift uncertainty, contamination from sky OH lines, and that the Universe is approximately half-ionized at this epoch, whereby observable Ly α emission is unlikely for galaxies embedded in a neutral intergalactic medium. Our targets are selected to be UV-bright, and span a range of absolute UV magnitudes with −23.1 < M UV < −19.8. With two LAEs detected at z = 7.68, we also consider the possibility of an ionized bubble at this redshift. Future synergistic Keck+JWST efforts will provide a powerful tool for pinpointing beacons of reionization and mapping the large-scale distribution of mass relative to the ionization state of the Universe.
0

The ALPINE-ALMA [CII] Survey: Unveiling the baryon evolution in the interstellar medium of z∼5 star-forming galaxies

P. Sawant et al.Jan 6, 2025
Recent observations suggest a significant and rapid buildup of dust in galaxies at high redshift (z>4); this presents new challenges to our understanding of galaxy formation in the early Universe. Although our understanding of the physics of dust production and destruction in a galaxy's interstellar medium (ISM) is improving, investigating the baryonic processes in the early universe remains a complex task owing to the inherent degeneracies in cosmological simulations and chemical evolution models. In this work we characterized the evolution of 98 z∼5 star-forming galaxies observed as part of the ALMA Large Program ALPINE by constraining the physical processes underpinning the gas and dust production, consumption, and destruction in their ISM. We made use of chemical evolution models to simultaneously reproduce the observed dust and gas content of our galaxies, obtained respectively from spectral energy distribution (SED) fitting and ionized carbon measurements. For each galaxy we constrained the initial gas mass, gas inflows and outflows, and efficiencies of dust growth and destruction. We tested these models with both the canonical Chabrier and a top-heavy initial mass function (IMF); the latter allowed rapid dust production on shorter timescales. We successfully reproduced the gas and dust content in most of the older galaxies (≳600 Myr) regardless of the assumed IMF, predicting dust production primarily through Type II supernovae (SNe) and no dust growth in the ISM, as well as moderate inflow of primordial gas. In the case of intermediate-age galaxies (300 - 600 Myr), we reproduced the gas and dust content through Type II SNe and dust growth in ISM, though we observed an overprediction of dust mass in older galaxies, potentially indicating an unaccounted dust destruction mechanism and/or an overestimation of the observed dust masses. The number of young galaxies (lesssim 300 Myr) reproduced, increases for models assuming top-heavy IMF but with maximal prescriptions of dust production. Galactic outflows are required (up to a mass-loading factor of 2) to reproduce the observed gas and dust mass, and to recover the decreasing trend of gas and dust over stellar mass with age. Assuming the Chabrier IMF, models are able to reproduce ∼ 65% of the total sample, while with top-heavy IMF the fraction increases to ∼ 93%, alleviating the tension between the observations and the models. Observations from the James Webb Space Telescope (JWST) will allow us to remove degeneracies in the diverse intrinsic properties of these galaxies (e.g., star formation histories and metallicity), thereby refining our models.
0

COSMOS brightest group galaxies III. Evolution of stellar ages

G. Gozaliasl et al.Aug 9, 2024
The unique characteristics of the brightest group galaxies (BGGs) serve as a link in the evolutionary continuum between galaxies such as the Milky Way and the more massive brightest cluster galaxies found in dense clusters. This research investigates the evolution of the stellar properties of BGGs over cosmic time ($z = 0.08-1.30$), extending the work from our prior studies. We analyzed the data of 246 BGGs selected from our X-ray galaxy group catalog within the COSMOS field, examining stellar age, mass, star-formation rate (SFR), specific SFR, and halo mass. We compared observations with the Millennium and Magneticum simulations. Additionally, we investigated whether stellar properties vary with the projected offset from the X-ray peak or the hosting halo center. We evaluated the accuracy of SED-derived stellar ages using a mock galaxy catalog, finding a mean absolute error of around 1 Gyr. Interestingly, the observed BGG age distributions exhibit a bias toward younger intermediate ages compared to both semi-analytical models and the Magneticum simulation. Our analysis of stellar age versus mass unveils intriguing trends with a positive slope, hinting at complex evolutionary pathways across redshifts. We observed a negative correlation between stellar age and SFR across all redshift ranges. We employed a cosmic time dependent main sequence framework to identify star forming BGGs and find that approximately 20<!PCT!> of BGGs in the local universe continue to exhibit characteristics typical of star forming galaxies, with this proportion increasing to 50<!PCT!> at $z=1.0$. Our findings support an inside-out formation scenario for BGGs, where older stellar populations reside near the X-ray peak and younger populations at larger offsets indicate ongoing star-formation. The observed distribution of stellar ages, particularly for lower-mass BGGs in the range of $10^ M_ deviates from the constant ages predicted by the models across all stellar mass ranges and redshifts. This discrepancy aligns with the current models' known limitations in accurately capturing galaxies' complex star-formation histories.
0

Mass and light in galaxy clusters: The case of Abell 370

M. Limousin et al.Nov 29, 2024
In the cold dark matter (CDM) paradigm, an association between the hypothetic dark matter (DM) and its stellar counterpart is expected. However, parametric strong-lensing studies of galaxy clusters often display misleading features: DM components on the group or cluster scale without any stellar counterpart, offsets between the two components that are larger than what might be allowed by CDM or self-interacting DM models, or significant unexplained external shear components. This is the case in the galaxy cluster Abell 370, whose mass distribution has been the subject of several studies that were motivated by a wealth of data. The cluster was described parametrically with strong-lensing techniques by a model with four dark matter clumps and galaxy-scale perturbers, and with a significant external shear component, whose physical origin remains a challenge. The dark matter distribution features a mass clump without a stellar counterpart and a significant offset between one of the dark matter clumps and its associated stellar counterpart. This paper is based on BUFFALO data, and we begin by revisiting this mass model. Sampling this complex parameter space with Markov chain Monte Carlo (MCMC) techniques, we find a solution that does not require any external shear and provides a slightly better root mean square (RMS) than previous models (0.7″ compared to 0.9″). Investigating this new solution further, in particular, by varying the parameters that lead the MCMC sampler, we present a class of models that can accurately reproduce the strong-lensing data, but whose parameters for the dark matter component are poorly constrained. This limits any insights into its properties. We then developed a model in which each large-scale dark matter component must be associated with a stellar counterpart. This model with three dark matter clumps cannot reproduce the observational constraints with an RMS smaller than 2.3″, and the parameters describing this dark matter component remain poorly constrained. Examining the total projected mass maps, we find a good agreement between the total mass and the stellar distribution, which are both bimodal to first order. We interpret the misleading features of the mass model with four dark matter clumps and the failure of the mass model with three dark matter clumps as being symptomatic of the lacking realism of a parametric description of the dark matter distribution in such a complex merging cluster. We encourage caution and attention on the outputs of parametric strong-lensing modelling. We briefly discuss the implications of our results for using Abell 370 as a gravitational telescope. With the class of models that reproduce the strong- lensing data, we computed the magnifications for background Ly α emitters, and we present the critical curves obtained for the redshift of the Dragon arc, whose recent observations with the James Webb Space Telescope prompted interest. Finally, in light of our results, we discuss the strategy of choosing merging (multi-modal) clusters as gravitational telescopes compared to simple (unimodal) clusters.
0

Crimson Behemoth: A massive clumpy structure hosting a dusty AGN at z=4.91

Takumi Tanaka et al.Oct 6, 2024
Abstract The current paradigm for the co-evolution of galaxies and their supermassive black holes postulates that dust-obscured active galactic nuclei (AGNs) represent a transitional phase towards a more luminous and unobscured state. However, our understanding of dusty AGNs and their host galaxies at early cosmic times is inadequate due to observational limitations. Here, we present JWST observations of CID-931, an X-ray-detected AGN at a spectroscopic redshift of $z_{\rm spec}=4.91$. Multiband NIRCam imaging from the COSMOS-Web program reveals an unresolved red core, similar to JWST-discovered dusty AGNs. Strikingly, the red core is surrounded by at least eight massive star-forming clumps spread over ${1{^{\prime \prime}_{.}}6} \approx 10\,\,{\rm kpc}$, each of which has a stellar mass of $10^9$–$10^{10}\, M_{\odot }$ and a radius of $\sim$0.1–1 kpc. The whole system amounts to $10^{11}\, M_{\odot }$ in stellar mass, higher than typical star-forming galaxies at the same epoch. In this system, gas inflows and/or complex merger events may trigger clump formation and AGN activity, thus leading to the rapid formation of a massive galaxy hosting a supermassive black hole. Future follow-up observations will provide new insights into the evolution of the galaxy–black hole relationship during such transitional phases in the early universe.
Load More