XC
Xi Chen
Author with expertise in Catalytic Nanomaterials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
66
(21% Open Access)
Cited by:
9,982
h-index:
101
/
i10-index:
880
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: Performance, intermediates, toxicity and mechanism

Jinyan Cao et al.Jan 23, 2019
In this paper, the degradation of tetracycline (TC) by peroxymonosulfate (PMS) activated with zero-valent iron (Fe0) was systematically studied through batches of experiments. First, effects of the key parameters (i.e., Fe0 dosage, PMS dosage, initial pH and co-existing ions) on TC degradation were investigated. Under the optimal conditions, high TC removal efficiency (88.5%) was achieved after 5 min treatment. Also, four control experiments were conducted to demonstrate the excellent performance of Fe0/PMS process and the synergistic effect between Fe0 and PMS. Compared with Fe2+ (the relatively common PMS activator), Fe0 was an efficient and long-lasting activator which consume less PMS and produce less dissolved iron ions. Then, the characteristics of reacted Fe0 particles were analyzed by SEM-EDS, XRD and XPS. The results shows that a few iron corrosion products generated and some of them deposited on the surface of reacted Fe0 particles. The generated iron corrosion products could promote PMS activation or adsorb TC directly. Next, the possible degradation pathway of TC was elaborated according to the intermediates detected by LC-QTOF-MS/MS and the toxicity in solution during reaction was evaluated. Finally, the common free radicals were monitored and the reaction mechanism was proposed.
0

Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries

Yutao Li et al.Apr 24, 2018
Garnet-structured Li7La3Zr2O12 is a promising solid Li-ion electrolyte for all-solid-state Li-metal batteries and Li-redox-flow batteries owing to its high Li-ion conductivity at room temperature and good electrochemical stability with Li metal. However, there are still three major challenges unsolved: (1) the controversial electrochemical window of garnet, (2) the impractically large resistance at a garnet/electrode interface and the fast lithium-dendrite growth along the grain boundaries of the garnet pellet, and (3) the fast degradation during storage. We have found that these challenges are closely related to a thick Li2CO3 layer and the Li–Al–O glass phase on the surface of garnet materials. Here we introduce a simple method to remove Li2CO3 and the protons in the garnet framework by reacting garnet with carbon at 700 °C; moreover, the amount of the Li–Al–O glass phase with a low Li-ion conductivity in the grain boundary on the garnet surface was also reduced. The surface of the carbon-treated garnet pellets is free of Li2CO3 and is wet by a metallic lithium anode, an organic electrolyte, and a solid composite cathode. The carbon post-treatment has reduced significantly the interfacial resistances to 28, 92 (at 65 °C), and 45 Ω cm2 at Li/garnet, garnet/LiFePO4, and garnet/organic-liquid interfaces, respectively. A symmetric Li/garnet/Li, an all-solid-state Li/garnet/LiFePO4, and a hybrid Li–S cell show small overpotentials, high Coulombic efficiencies, and stable cycling performance.
0

In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion

Xi Chen et al.Mar 19, 2018
Mesoporous CeO2 catalysts (CeO2-MOF) were synthesized by pyrolysis of Ce-MOF precursor (Ce-(1,3,5-benzenetricarboxylic acid) (H2O)6). Physicochemical properties of the samples were investigated by means of various techniques including XRD, SEM, TEM, BET, Raman, XPS, H2-TPR, O2-TPD and NH3-TPD, and their catalytic performance were evaluated by toluene combustion compared with commercial CeO2 (CeO2-C) and CeO2 prepared by precipitation method (CeO2-P). The results show that CeO2-MOF/350 catalyst (pyrolyzed at 350 °C) presents enhanced catalytic activity for toluene oxidation with the conversion of T10%, T50% and T90% at 180, 211, and 223 °C, respectively (SV = 20,000 mL/(g h), toluene concentration = 1000 ppm). Especially for high-temperature region, CeO2-MOF/350 catalyst displays much superior ability to rapidly reach to 100% conversion compared to CeO2-C and CeO2-P catalysts which usually result in a much broader temperature region to achieve complete conversion of toluene. The high catalytic performance of CeO2-MOF/350 can be reasonably ascribed to a series of better properties, such as three-dimensional penetrating mesoporous channels, larger specific surface area, smaller average grain size, higher relative percentages of Ce3+/Ce4+ and OSur/OLatt, higher oxygen storage capacity, higher oxygen vacancy concentration, better low temperature reducibility, more active oxygen species and more acid sites. Furthermore, CeO2-MOF/350 catalyst presented excellent resistance to H2O deactivation and temperature change, and in situ DRIFTs study on CeO2-MOF/350 catalyst suggests that toluene degradation is proceeded in consecutive steps via rapid transformation to aldehydic and benzoate species to finally form CO2 and H2O.
0

Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs

Jin Chen et al.Nov 16, 2017
3MnOx-1CeOy (3Mn1Ce), a binary oxide with stoichiometric ratio of Mn/Ce = 3, is synthesized via hydrolysis driving redox. Compared to MnO2, CeO2, Cop-3Mn1Ce and Mixed-3Mn1Ce, the 3Mn1Ce catalyst exhibits better catalytic activity for toluene oxidation, which could be ascribed to higher concentration of active lattice oxygen, and better low-temperature reducibility, as well as homogeneous dispersion. In the test of substrate applicability, 3Mn1Ce displays good performances in the removal of benzene, o-xylene and chlorobenzene at moderate temperature. The application of high WHSV of 240000 mL/(g h) confirms the 3Mn1Ce catalyst still remains high efficiency to diminish toluene, giving the temperature at 280 °C for complete mineralization. A set of experiments under simulated realistic exhaust conditions demonstrate that 3Mn1Ce is a robust catalyst with high activity to oxidize mixed aromatic VOCs (BTX and chlorobenzene), satisfied endurability to high humidity (above 10–20 vol.% water) and good tolerance to severe change of reaction temperature. With characterization of XRD and TPR, the high performance is related to the homogeneous introduction of Ce resulting in higher structural stability and reversible reducibility. Moreover, the inner principle for oxidation of VOCs is revealed by comprehension of kinetic study.
Load More