VP
V. Pavlidou
Author with expertise in Solar Physics and Space Weather
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
455
h-index:
51
/
i10-index:
106
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

BLAZARS IN THE FERMI ERA: THE OVRO 40 m TELESCOPE MONITORING PROGRAM

Joseph Richards et al.May 23, 2011
The Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope provides an unprecedented opportunity to study gamma-ray blazars. To capitalize on this opportunity, beginning in late 2007, about a year before the start of LAT science operations, we began a large-scale, fast-cadence 15 GHz radio monitoring program with the 40-m telescope at the Owens Valley Radio Observatory (OVRO). This program began with the 1158 northern (declination>-20 deg) sources from the Candidate Gamma-ray Blazar Survey (CGRaBS) and now encompasses over 1500 sources, each observed twice per week with a ~4 mJy (minimum) and 3% (typical) uncertainty. Here, we describe this monitoring program and our methods, and present radio light curves from the first two years (2008 and 2009). As a first application, we combine these data with a novel measure of light curve variability amplitude, the intrinsic modulation index, through a likelihood analysis to examine the variability properties of subpopulations of our sample. We demonstrate that, with high significance (7-sigma), gamma-ray-loud blazars detected by the LAT during its first 11 months of operation vary with about a factor of two greater amplitude than do the gamma-ray-quiet blazars in our sample. We also find a significant (3-sigma) difference between variability amplitude in BL Lacertae objects and flat-spectrum radio quasars (FSRQs), with the former exhibiting larger variability amplitudes. Finally, low-redshift (z<1) FSRQs are found to vary more strongly than high-redshift FSRQs, with 3-sigma significance. These findings represent an important step toward understanding why some blazars emit gamma-rays while others, with apparently similar properties, remain silent.
0

LiteBIRD science goals and forecasts: a full-sky measurement of gravitational lensing of the CMB

R. Génova-Santos et al.Jun 1, 2024
Abstract We explore the capability of measuring lensing signals in LiteBIRD full-sky polarization maps. With a 30 arcmin beam width and an impressively low polarization noise of 2.16 μ K-arcmin, LiteBIRD will be able to measure the full-sky polarization of the cosmic microwave background (CMB) very precisely. This unique sensitivity also enables the reconstruction of a nearly full-sky lensing map using only polarization data, even considering its limited capability to capture small-scale CMB anisotropies. In this paper, we investigate the ability to construct a full-sky lensing measurement in the presence of Galactic foregrounds, finding that several possible biases from Galactic foregrounds should be negligible after component separation by harmonic-space internal linear combination. We find that the signal-to-noise ratio of the lensing is approximately 40 using only polarization data measured over 80% of the sky. This achievement is comparable to Planck 's recent lensing measurement with both temperature and polarization and represents a four-fold improvement over Planck 's polarization-only lensing measurement. The LiteBIRD lensing map will complement the Planck lensing map and provide several opportunities for cross-correlation science, especially in the northern hemisphere.
0
Citation3
0
Save
0

Assessing the Initial Outcomes of a Blended Learning Course for Teachers Facilitating Astronomy Activities for Young Children

Maria Ampartzaki et al.Jun 5, 2024
Globally, astronomy education is being promoted through curricula. Research indicates that educators need support to fundamentally comprehend and gain knowledge of astronomy as well as pedagogical expertise to organize and facilitate astronomy-related activities in the classroom. In response to this notable demand, we have designed a coherent training program that addresses both the foundational and pedagogical content knowledge necessary to instruct astronomy subjects at the pre-primary and early school levels. This program is constructed in a blended learning format, which combines online and in-person training with practical implementations in the classroom. We trained both professional and student kindergarten teachers, and we used questionnaires and interviews to evaluate and improve our training program. In this article, we present the results of our initial evaluation. We found that the student teachers showed a more significant improvement in their content knowledge, pedagogical content knowledge, and instruction preferences compared to the professional teachers. However, we identified several areas for improvement, which will be addressed in future cycles of the program for further evaluation.
0
Citation2
0
Save
0

LiteBIRD science goals and forecasts. A case study of the origin of primordial gravitational waves using large-scale CMB polarization

P. Campeti et al.Jun 1, 2024
Abstract We study the possibility of using the LiteBIRD satellite B -mode survey to constrain models of inflation producing specific features in CMB angular power spectra. We explore a particular model example, i.e. spectator axion-SU(2) gauge field inflation. This model can source parity-violating gravitational waves from the amplification of gauge field fluctuations driven by a pseudoscalar “axionlike” field, rolling for a few e-folds during inflation. The sourced gravitational waves can exceed the vacuum contribution at reionization bump scales by about an order of magnitude and can be comparable to the vacuum contribution at recombination bump scales. We argue that a satellite mission with full sky coverage and access to the reionization bump scales is necessary to understand the origin of the primordial gravitational wave signal and distinguish among two production mechanisms: quantum vacuum fluctuations of spacetime and matter sources during inflation. We present the expected constraints on model parameters from LiteBIRD satellite simulations, which complement and expand previous studies in the literature. We find that LiteBIRD will be able to exclude with high significance standard single-field slow-roll models, such as the Starobinsky model, if the true model is the axion-SU(2) model with a feature at CMB scales. We further investigate the possibility of using the parity-violating signature of the model, such as the TB and EB angular power spectra, to disentangle it from the standard single-field slow-roll scenario. We find that most of the discriminating power of LiteBIRD will reside in BB angular power spectra rather than in TB and EB correlations.
0
Citation2
0
Save
0

Impact of beam far side-lobe knowledge in the presence of foregrounds for LiteBIRD

Clément Leloup et al.Jun 1, 2024
Abstract We present a study of the impact of a beam far side-lobe lack of knowledge on the measurement of the Cosmic Microwave Background B -mode signal at large scale. Beam far side-lobes induce a mismatch in the transfer function of Galactic foregrounds between the dipole and higher multipoles which degrads the performances of component separation methods. This leads to foreground residuals in the CMB map. It is expected to be one of the main source of systematic effects in future CMB polarization observations. Thus, it becomes crucial for all-sky survey missions to take into account the interplays between beam systematic effects and all the data analysis steps. LiteBIRD is the ISAS/JAXA second strategic large-class satellite mission and is dedicated to target the measurement of CMB primordial B modes by reaching a sensitivity on the tensor-to-scalar ratio r of σ ( r ) ≤ 10 -3 assuming r = 0. The primary goal of this paper is to provide the methodology and develop the framework to carry out the end-to-end study of beam far side-lobe effects for a space-borne CMB experiment. We introduce uncertainties in the beam model, and propagate the beam effects through all the steps of the analysis pipeline, most importantly including component separation, up to the cosmological results in the form of a bias δr . As a demonstration of our framework, we derive requirements on the calibration and modeling for the LiteBIRD 's beams under given assumptions on design, simulation, component separation method and allocated error budget. In particular, we assume a parametric method of component separation with no mitigation of the far side-lobes effect at any stage of the analysis pipeline. We show that δr is mostly due to the integrated fractional power difference between the estimated beams and the true beams in the far side-lobes region, with little dependence on the actual shape of the beams, for low enough δr . Under our set of assumptions, in particular considering the specific foreground cleaning method we used, we find that the integrated fractional power in the far side-lobes should be known at the level of ∼ 10 -4 , to achieve the required limit on the bias δr < 1.9 × 10 -5 . The framework and tools developed for this study can be easily adapted to provide requirements under different design, data analysis frameworks and for other future space-borne experiments, such as PICO or CMB-Bharat. We further discuss the limitations of this framework and potential extensions to circumvent them.
0

Nonparametric Bayesian reconstruction of Galactic magnetic fields using information field theory. The inclusion of line-of-sight information in ultrahigh-energy cosmic-ray backtracing

Alexandros Tsouros et al.Aug 29, 2024
Ultrahigh-energy cosmic rays (UHECRs) are charged particles with energies surpassing $10^ $ eV. Their sources remain elusive because they are obscured by deflections caused by the Galactic magnetic field (GMF). This challenge is further complicated by our limited understanding of the 3D structure of the GMF because current GMF observations primarily consist of quantities that are integrated along the line of sight (LOS). Nevertheless, data from upcoming stellar polarization surveys along with Gaia stellar parallax data are expected to yield local GMF measurements. This study is the second entry in our exploration of a Bayesian inference approach to the local GMF that uses synthetic local GMF observations that emulate forthcoming local GMF measurements, and attempts to use them to reconstruct its $3$D structure. The ultimate aim is to trace back observed UHECRs and thereby update our knowledge about their possible origin. In this proof-of-concept work, we assumed as ground truth a magnetic field produced by a dynamo simulation of the Galactic ISM. We employed methods of Bayesian statistical inference in order to sample the posterior distribution of the GMF within part of the Galaxy. By assuming a known rigidity and arrival direction of an UHECR, we traced its trajectory back through various GMF configurations drawn from the posterior distribution. Our objective was to rigorously evaluate the performance of our algorithm in scenarios that closely mirror the setting of expected future applications. In pursuit of this, we conditioned the posterior to synthetically integrated LOS measurements of the GMF, in addition to synthetic local plane of sky-component measurements. Our results demonstrate that for all locations of the observed arrival direction on the plane of sky, our algorithm is able to substantially update our knowledge on the original arrival direction of UHECRs with a rigidity of $E/Z = 5 $ eV, even without any LOS information. When the integrated data are included in the inference, the regions of the celestial sphere in which the maximum error occurs are greatly reduced. The maximum error is diminished by a factor of about $3$ even in these regions in the specific setting we studied. Additionally, we are able to identify the regions in which the largest error is expected to occur.
0

Requirements on the gain calibration for LiteBIRD polarisation data with blind component separation

F. Carralot et al.Jan 1, 2025
Abstract The detection of primordial B modes of the cosmic microwave background (CMB) could provide information about the early stages of the Universe's evolution. The faintness of this signal requires exquisite calibration accuracy and control of instrumental systematic effects which otherwise could bias the measurements. In this work, we study the impact of an imperfect relative polarisation gain calibration on the recovered value of the tensor-to-scalar ratio r for the LiteBIRD experiment, through the application of the blind Needlet Internal Linear Combination (NILC) foreground-cleaning method. We derive requirements on the relative calibration accuracy of the overall polarisation gain (Δ g ν ) for each LiteBIRD frequency channel. Our results show that minimum variance techniques, as NILC, are less sensitive to systematic gain calibration uncertainties compared to a parametric approach, if the latter is not equipped with a proper modelling of these instrumental effects. In this study, the most stringent requirements are found in the channels where the CMB signal is relatively brighter, with the tightest constraints at 166 GHz (Δ g ν ≈ 0.16%). This differs from the outcome of an analogous analysis performed with a parametric method, where the tightest requirements are obtained for the foreground-dominated channels. Gain calibration uncertainties, corresponding to the derived requirements, are then simultaneously propagated into all frequency channels. By doing so, we find that the overall impact on estimated r is lower than the total gain systematic budget for LiteBIRD approximately by a factor 5, due to the correlations of the impacts of gain calibration uncertainties in different frequency channels. In order to decouple the systematic effect from the specific choice of the model, we derive the requirements assuming constant spectral parameters for the foreground emission. To assess the robustness of the obtained results against more realistic scenarios, we repeat the analysis assuming sky models of intermediate and high complexity. In these further cases, we adopt an optimised NILC pipeline, called the Multi-Clustering NILC (MC-NILC). We find that the impact of gain calibration uncertainties on r is lower than the LiteBIRD gain systematics budget for the intermediate-complexity sky model. For the high-complexity case, instead, it would be necessary to tighten the requirements by a factor 1.8.