QY
Qingwei Yan
Author with expertise in Nanoscale Thermal Transport in Carbon Materials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(17% Open Access)
Cited by:
748
h-index:
22
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials

Wen Dai et al.Sep 24, 2019
Along with the technology evolution for dense integration of high-power, high-frequency devices in electronics, the accompanying interfacial heat transfer problem leads to urgent demands for advanced thermal interface materials (TIMs) with both high through-plane thermal conductivity and good compressibility. Most metals have satisfactory thermal conductivity but relatively high compressive modulus, and soft silicones are typically thermal insulators (0.3 W m-1 K-1). Currently, it is a great challenge to develop a soft material with the thermal conductivity up to metal level for TIM application. This study solves this problem by constructing a graphene-based microstructure composed of mainly vertical graphene and a thin cap of horizontal graphene layers on both the top and bottom sides through a mechanical machining process to manipulate the stacked architecture of conventional graphene paper. The resultant graphene monolith has an ultrahigh through-plane thermal conductivity of 143 W m-1 K-1, exceeding that of many metals, and a low compressive modulus of 0.87 MPa, comparable to that of silicones. In the actual TIM performance measurement, the system cooling efficiency with our graphene monolith as TIM is 3 times as high as that of the state-of-the-art commercial TIM, demonstrating the superior ability to solve the interfacial heat transfer issues in electronic systems.
0

Ultrahigh-Aspect-Ratio Boron Nitride Nanosheets Leading to Superhigh In-Plane Thermal Conductivity of Foldable Heat Spreader

Qingwei Yan et al.Mar 18, 2021
The rapid development of integrated circuits and electronic devices creates a strong demand for highly thermally conductive yet electrically insulating composites to efficiently solve "hot spot" problems during device operation. On the basis of these considerations, hexagonal boron nitride nanosheets (BNNS) have been regarded as promising fillers to fabricate polymer matrix composites. However, so far an efficient approach to prepare ultrahigh-aspect-ratio BNNS with large lateral size while maintaining an atomically thin nature is still lacking, seriously restricting further improvement of the thermal conductivity for BNNS/polymer composites. Here, a rapid and high-yield method based on a microfluidization technique is developed to obtain exfoliated BNNS with a record high aspect ratio of ≈1500 and a low degree of defects. A foldable and electrically insulating film made of such a BNNS and poly(vinyl alcohol) (PVA) matrix through filtration exhibits an in-plane thermal conductivity of 67.6 W m–1 K–1 at a BNNS loading of 83 wt %, leading to a record high value of thermal conductivity enhancement (≈35 500). The composite film then acts as a heat spreader for heat dissipation of high-power LED modules and shows superior cooling efficiency compared to commercial flexible copper clad laminate. Our findings provide a practical route to produce electrically insulating polymer composites with high thermal conductivity for thermal management applications in modern electronic devices.
0

A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods

Wen Dai et al.Feb 6, 2019
With the increasing integration of devices in electronics fabrication, there are growing demands for thermal interface materials (TIMs) with high through-plane thermal conductivity for efficiently solving thermal management issues. Graphene-based papers consisting of a layer-by-layer stacked architecture have been commercially used as lateral heat spreaders; however, they lack in-depth studies on their TIM applications due to the low through-plane thermal conductivity (<6 W m-1 K-1). In this study, a graphene hybrid paper (GHP) was fabricated by the intercalation of silicon source and the in situ growth of SiC nanorods between graphene sheets based on the carbothermal reduction reaction. Due to the formation of covalent C-Si bonding at the graphene-SiC interface, the GHP possesses a superior through-plane thermal conductivity of 10.9 W m-1 K-1 and can be up to 17.6 W m-1 K-1 under packaging conditions at 75 psi. Compared with the current graphene-based papers, our GHP has the highest through-plane thermal conductivity value. In the TIM performance test, the cooling efficiency of the GHP achieves significant improvement compared to that of state-of-the-art thermal pads. Our GHP with characteristic structure is of great promise as an inorganic TIM for the highly efficient removal of heat from electronic devices.
0

2D Materials‐Based Thermal Interface Materials: Structure, Properties, and Applications

Wen Dai et al.Jun 7, 2024
Abstract The challenges associated with heat dissipation in high‐power electronic devices used in communication, new energy, and aerospace equipment have spurred an urgent need for high‐performance thermal interface materials (TIMs) to establish efficient heat transfer pathways from the heater (chip) to heat sinks. Recently, emerging 2D materials, such as graphene and boron nitride, renowned for their ultrahigh basal‐plane thermal conductivity and the capacity to facilitate cross‐scale, multi‐morphic structural design, have found widespread use as thermal fillers in the production of high‐performance TIMs. To deepen the understanding of 2D material‐based TIMs, this review focuses primarily on graphene and boron nitride‐based TIMs, exploring their structures, properties, and applications. Building on this foundation, the developmental history of these TIMs is emphasized and a detailed analysis of critical challenges and potential solutions is provided. Additionally, the preparation and application of some other novel 2D materials‐based TIMs are briefly introduced, aiming to offer constructive guidance for the future development of high‐performance TIMs.