QZ
Qing Zhu
Author with expertise in Global Methane Emissions and Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(62% Open Access)
Cited by:
3,687
h-index:
29
/
i10-index:
67
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Global Methane Budget 2000–2017

Marielle Saunois et al.Jul 14, 2020
Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
0
Paper
Citation1,663
0
Save
0

The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution

Jean‐Christophe Golaz et al.Mar 16, 2019
This work documents the first version of the U.S. Department of Energy (DOE) new Energy Exascale Earth System Model (E3SMv1). We focus on the standard resolution of the fully coupled physical model designed to address DOE mission-relevant water cycle questions. Its components include atmosphere and land (110-km grid spacing), ocean and sea ice (60 km in the midlatitudes and 30 km at the equator and poles), and river transport (55 km) models. This base configuration will also serve as a foundation for additional configurations exploring higher horizontal resolution as well as augmented capabilities in the form of biogeochemistry and cryosphere configurations. The performance of E3SMv1 is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima simulations consisting of a long preindustrial control, historical simulations (ensembles of fully coupled and prescribed SSTs) as well as idealized CO2 forcing simulations. The model performs well overall with biases typical of other CMIP-class models, although the simulated Atlantic Meridional Overturning Circulation is weaker than many CMIP-class models. While the E3SMv1 historical ensemble captures the bulk of the observed warming between preindustrial (1850) and present day, the trajectory of the warming diverges from observations in the second half of the twentieth century with a period of delayed warming followed by an excessive warming trend. Using a two-layer energy balance model, we attribute this divergence to the model's strong aerosol-related effective radiative forcing (ERFari+aci = −1.65 W/m2) and high equilibrium climate sensitivity (ECS = 5.3 K).
0
Paper
Citation672
0
Save
0

Interactions between urban heat islands and heat waves

Lei Zhao et al.Dec 6, 2017
Heat waves (HWs) are among the most damaging climate extremes to human society. Climate models consistently project that HW frequency, severity, and duration will increase markedly over this century. For urban residents, the urban heat island (UHI) effect further exacerbates the heat stress resulting from HWs. Here we use a climate model to investigate the interactions between the UHI and HWs in 50 cities in the United States under current climate and future warming scenarios. We examine UHI2m (defined as urban-rural difference in 2m-height air temperature) and UHIs (defined as urban-rural difference in radiative surface temperature). Our results show significant sensitivity of the interaction between UHI and HWs to local background climate and warming scenarios. Sensitivity also differs between daytime and nighttime. During daytime, cities in the temperate climate region show significant synergistic effects between UHI and HWs in current climate, with an average of 0.4 K higher UHI2m or 2.8 K higher UHIs during HWs than during normal days. These synergistic effects, however, diminish in future warmer climates. In contrast, the daytime synergistic effects for cities in dry regions are insignificant in the current climate, but emerge in future climates. At night, the synergistic effects are similar across climate regions in the current climate, and are stronger in future climate scenarios. We use a biophysical factorization method to disentangle the mechanisms behind the interactions between UHI and HWs that explain the spatial-temporal patterns of the interactions. Results show that the difference in the increase of urban versus rural evaporation and enhanced anthropogenic heat emissions (air conditioning energy use) during HWs are key contributors to the synergistic effects during daytime. The contrast in water availability between urban and rural land plays an important role in determining the contribution of evaporation. At night, the enhanced release of stored and anthropogenic heat during HWs are the primary contributors to the synergistic effects.
0
Paper
Citation312
0
Save
0

The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design

D. Huntzinger et al.Dec 17, 2013
Abstract. Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding of land–atmosphere carbon exchange to larger regions. The North American Carbon Program (NACP) Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal model intercomparison and evaluation effort focused on improving the diagnosis and attribution of carbon exchange at regional and global scales. MsTMIP builds upon current and past synthesis activities, and has a unique framework designed to isolate, interpret, and inform understanding of how model structural differences impact estimates of carbon uptake and release. Here we provide an overview of the MsTMIP effort and describe how the MsTMIP experimental design enables the assessment and quantification of TBM structural uncertainty. Model structure refers to the types of processes considered (e.g., nutrient cycling, disturbance, lateral transport of carbon), and how these processes are represented (e.g., photosynthetic formulation, temperature sensitivity, respiration) in the models. By prescribing a common experimental protocol with standard spin-up procedures and driver data sets, we isolate any biases and variability in TBM estimates of regional and global carbon budgets resulting from differences in the models themselves (i.e., model structure) and model-specific parameter values. An initial intercomparison of model structural differences is represented using hierarchical cluster diagrams (a.k.a. dendrograms), which highlight similarities and differences in how models account for carbon cycle, vegetation, energy, and nitrogen cycle dynamics. We show that, despite the standardized protocol used to derive initial conditions, models show a high degree of variation for GPP, total living biomass, and total soil carbon, underscoring the influence of differences in model structure and parameterization on model estimates.
0
Paper
Citation259
0
Save
0

Global nitrous oxide budget (1980–2020)

Hanqin Tian et al.Jun 11, 2024
Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).
0
Paper
Citation3
0
Save
0

Changes in above- versus belowground biomass distribution in permafrost regions in response to climate warming

Hanbo Yun et al.Jun 10, 2024
Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.
0
Paper
Citation2
0
Save
Load More