MH
Minpeng Hu
Author with expertise in Global Methane Emissions and Impacts
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
3
h-index:
17
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Global nitrous oxide budget (1980–2020)

Hanqin Tian et al.Jun 11, 2024
Abstract. Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).
0
Paper
Citation3
0
Save
0

A Modified Xinanjiang Model for Quantifying Streamflow Components in a Typical Watershed in Eastern China

Kaibin Wu et al.Jun 25, 2024
An accurate quantification of flow components and an understanding of water source dynamics are essential for effective water resource and quality management. However, the complexity of hydrological processes and the interference of intensive human activities pose significant challenges in precisely separating water discharge into distinct components such as surface runoff, interflow, and groundwater. The Xinanjiang (XAJ) model, a conceptual watershed hydrological model, has been developed and successfully implemented for rainfall–runoff simulations and hydrograph separations across various Chinese watersheds. While the model framework is robust, it fails to account for agricultural irrigation water withdrawals and the variations in in-stream water travel times across different hydrological regimes, introducing considerable uncertainty in simulating low-flow conditions. This study introduced modifications to the XAJ model by allowing parameter adjustments across different flow regimes and incorporating irrigation withdrawals into the runoff routing process. Utilizing a decade of hydrometeorological data (2013–2022) from the Yongan River watershed in eastern China, the modified model demonstrated improved efficiency metrics in low- and medium-flow regimes compared to the original model, with a Nash–Sutcliffe coefficient improvement from −4.43~−0.49 to 0.40~0.46, R2 from 0.21~0.36 to 0.53~0.63, and BIAS reduction from 7.60~89.08% to 2.06~12.71%. Furthermore, the modified XAJ model provided a more accurate estimation of the spatial and temporal distribution of streamflow components across sub-watersheds. The original model tended to overestimate groundwater contributions (13%) and underestimate interflow (14%), particularly in low-flow conditions. The enhanced XAJ model, thus, offers a more effective tool for identifying streamflow components, providing essential insights into hydrological processes for better management decisions.
0
0
Save