SL
Shizhuo Liu
Author with expertise in Aqueous Zinc-Ion Battery Technology
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
2
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

In Situ Self‐Reconfiguration Induced Multifunctional Triple‐Gradient Artificial Interfacial Layer toward Long‐Life Zn‐Metal Anodes

Zhipeng Shao et al.Jun 12, 2024
Abstract Aqueous Zn‐ion batteries featuring with intrinsic safety and low cost are highly desirable for large‐scale energy storage, but the unstable Zn‐metal anode resulting from uncontrollable dendrite growth and grievous hydrogen evolution reaction (HER) shortens their cycle life. Herein, a feasible in situ self‐reconfiguration strategy is developed to generate triple‐gradient poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA‐TFSI)‐Zn 5 (OH) 8 Cl 2 ·H 2 O‐Sn (PT‐ZHC‐Sn) artificial layer. The resulting triple‐gradient interface consists of the spherical top layer PT with cation confinement and H 2 O inhibition, the dense intermediate layer ZHC nanosheet with Zn 2+ conduction and electron shielding, and the bottom layer Znophilic Sn metal. The well‐designed triple‐gradient artificial interfacial layer synergistically facilitates rapid Zn 2+ diffusion to regulate uniform Zn deposition and accelerates the desolvation process while suppressing HER. Consequently, the PT‐ZHC‐Sn@Zn symmetric cell achieves an ultralong lifespan over 6500 h at 0.5 mA cm −2 for 0.5 mAh cm −2 . Furthermore, a full battery coupling with MnO 2 cathode exhibits a 17.2% increase in capacity retention compared with bare Zn anode after 1000 cycles. The in situ self‐reconfiguration strategy is also applied to prepare triple‐gradient PT‐ZHC‐In, and the assembled Zn//Cu cell operates steadily for over 8400 h while maintaining Coulombic efficiency of 99.6%. This work paves the way to designing multicomponent gradient interface for stable Zn‐metal anodes.
0

Ionic Selective Separator Design Enables Long‐Life Zinc–Iodine Batteries via Synergistic Anode Stabilization and Polyiodide Shuttle Suppression

Peng Yang et al.Aug 24, 2024
Abstract Aqueous zinc–iodine batteries show immense potential in the electrochemical energy storage field due to their intrinsic safety and cost‐effectiveness. However, the rampant dendritic growth and continuous side reactions on the zinc anode, coupled with the shuttling phenomenon of polyiodides, severely affect their cyclic life. In response, this study utilizes a carboxyl‐functionalized metal‐organic framework UiO‐66‐(COOH) 2 (UC) to modify commercial glass fiber (GF) to develop a novel ionic selective separator (UC/GF). This separator exhibits cation exchange ability for Zn 2+ and polyiodides, thereby simultaneously stabilizing the zinc anode and inhibiting the shuttle effect of polyiodides. Enhanced by the abundant polar carboxyl groups, the UC/GF separator can effectively facilitate Zn 2+ ion transport and accelerate the desolvation of hydrated zinc ions by its zincophilicity and hydrophilicity, while significantly hindering the transfer of polyiodides via electrostatic repulsion. Consequently, the Zn|UC/GF|Zn symmetric battery enables a long lifespan of over 3400 h at a current density of 5.0 mA cm −2 , while the Zn|UC/GF|I 2 exhibits an exceptional discharge capacity of 103.8 mAh g −1 after 35 000 cycles at 10 C with a capacity decay rate of only 0.0013% per cycle. This separator modification strategy that synergistically optimizes anode and cathode performance provides unique insights into the commercialization of zinc–iodine batteries.